Способ измерения скорости судна доплеровским лагом

Изобретение относится к области кораблевождения, а именно к способам и устройствам измерения абсолютной скорости судна. Достигаемый технический результат - повышение надежности обнаружения эхосигналов, отраженных от морского дна, при наличии во входном сигнале, кроме эхосигналов, отраженных от дна, также эхосигналов, отраженных от водных звукорассеивающих слоев. Заявляемый способ достигается следующими действиями: при обнаружении каждого эхосигнала дополнительно к определению его частоты определяется время его обнаружения относительно времени излучения зондирующего сигнала; оценки частот и времен обнаружения эхосигналов, обнаруженных на разных циклах излучения зондирующего сигнала, перед осреднением подвергаются траекторному анализу, реализуемому, например, с использованием алгоритма последовательного анализа Вальда. В результате траекторного анализа эхосигналы, отраженные от дна, отделяются от эхосигналов, отраженных от звукорассеивающих слоев; осреднение частот эхосигналов выполняется отдельно для эхосигналов, отраженных от дна, и эхосигналов, отраженных от каждого звукорассеивающего слоя. 2 з.п. ф-лы, 2 ил.

 

Изобретение относится к области кораблевождения, а именно к способам и устройствам измерения скорости судна доплеровским методом.

Одним из условий безопасного кораблевождения является постоянный контроль абсолютной (относительно дна) скорости судна.

Измерение абсолютной скорости судна обеспечивается с помощью доплеровского лага [1-6]. И хотя на надводных кораблях и судах вместо доплеровского лага все чаще используется спутниковая навигационная система, на подводных лодках и подводных аппаратах (обитаемых и необитаемых) доплеровский лаг продолжает оставаться основным средством измерения абсолютной скорости.

В качестве прототипа выбран описанный в работе [1] и поясненный на фиг. 1 способ измерения скорости судна доплеровским лагом, включающий циклическое излучение под наклоном к дну тонального зондирующего сигнала, формирование на каждом цикле излучения - приема характеристики направленности для приема сигнала с направления излучения; обнаружение эхосигналов на каждом цикле излучения - приема на выходе сформированной характеристики направленности; определение частоты обнаруженного эхосигнала; вычисление средней частоты эхосигналов, полученных на разных циклах излучения; вычисление скорости судна по формуле:

где V - скорость судна, м/с;

ƒЗC - частота зондирующего сигнала (ЗС), Гц;

ƒЭС/ср - средняя частота эхосигналов (ЭС), полученных на разных циклах излучения, Гц;

ψизл - угол между направлением излучения ЗС и направлением вертикально вниз, град (как правило, ψизл=30°);

Сzv - скорость звука в воде, м/с.

Недостатком описанного способа является низкая точность определения скорости судна при наличии течения и водных звукорассеивающих слоев (далее - звукорассеивающий слой). Объясняется это тем, что при наличии течения и водных звукорассеивающих слоев на одном цикле излучения может быть обнаружено несколько эхосигналов с разными частотами. В результате при осреднении частот всех ЭС, обнаруженных на разных циклах излучения, полученная средняя частота будет смещена относительно фактической частоты ЭС, отраженного от дна. Как следствие, будет смещена и оценка скорости судна, вычисляемая по формуле (1).

Решаемая техническая проблема - повышение эксплуатационных характеристик доплеровского лага.

Достигаемый технический результат - повышение надежности обнаружения эхосигналов, отраженных от морского дна, при наличии во входном сигнале, кроме эхосигналов, отраженных от дна, также эхосигналов, отраженных от звукорассеивающих слоев.

Заявляемый способ достигается следующими действиями, отличающими его от прототипа:

1) при обнаружении каждого эхосигнала дополнительно к определению его частоты определяется время его обнаружения относительно времени излучения зондирующего сигнала;

2) оценки частот и времен обнаружения эхосигналов, обнаруженных на разных циклах излучения зондирующего сигнала, перед осреднением подвергаются траекторному анализу, реализуемому, например, с использованием алгоритма последовательного анализа Вальда [7]. В результате траекторного анализа эхосигналы, отраженные от дна, отделяются от эхосигналов, отраженных от звукорассеивающих слоев;

3) осреднение частот эхосигналов выполняется отдельно для эхосигналов, отраженных от дна, и эхосигналов, отраженных от каждого звукорассеивающего слоя.

Блок схема заявляемого способа изображена на фиг. 2.

В блоке 1 осуществляется циклическое излучение под наклоном к дну тонального зондирующего сигнала.

В блоке 2 на каждом цикле излучения зондирующего сигнала выполняется формирование характеристики направленности для приема сигнала с направления излучения.

В блоке 3 на каждом цикле излучения выполняется процедура обнаружения эхосигналов. Для каждого обнаруженного эхосигнала определяются его частота и время его обнаружения относительно времени излучения зондирующего сигнала.

В блоке 4 осуществляется траекторный анализ оценок частот и времен обнаружения эхосигналов, обнаруженных на разных циклах излучения, в результате чего эхосигналы, отраженные от дна, отделяются от эхосигналов, отраженных от звукорассеивающих слоев.

В блоке 5 выполняется усреднение частот эхосигналов отдельно для эхосигналов, отраженных от дна, и эхосигналов, отраженных от каждого звукорассеивающего слоя.

В блоке 6 по формуле (1) вычисляются скорости судна относительно дна и относительно каждого звукорассеивающего слоя.

Таким образом, обеспечивается повышение надежности обнаружения ЭС от морского дна при наличии во входном сигнале, кроме эхосигналов, отраженных от дна, также эхосигналов, отраженных от звукорассеивающих слоев, за счет применения блока траекторного анализа принятых ЭС, позволяющего производить межцикловую идентификацию и корректное усреднение параметров ЭС.

Технический результат подтвержден имитационным моделированием и экспериментально.

Источники информации:

1. Виноградов К.А., Кошкарев В.Н., Осюхин Б.А., Хребтов А.А. Абсолютные и относительные лаги, - Л.: Судостроение, 1990.

2. Хребтов А.А., Виноградов К.А., Кошкарев В.Н. и др. Судовые измерители скорости.- Л.: Судостроение, 1978.

3. Патент РФ №2439613. Гидроакустический доплеровский лаг с алгоритмом многоальтернативной фильтрации эхосигнала, основанным на использовании банка фильтров Калмана.

4. Богородский В.В. Гидроакустическая техника исследования и освоения океана.- Л.: Гидрометиздат, 1984.

5. Гидроакустические навигационные средства. Под ред. В.В. Богородского. - Л.: Судостроение, 1983, 262 с.

6. Виноградов К.А., Новиков И.А. Гидроакустические навигационные системы и средства // Навигация и гидрография, ГНИИНГИ МО РФ, 1999, №7.

7. Ширяев А.Н. Статистический последовательный анализ. - М.: Наука, 1969.

1. Способ измерения скорости судна доплеровским лагом, включающий циклическое излучение под наклоном к дну тонального зондирующего сигнала, формирование на каждом цикле излучения - приема характеристики направленности для приема сигнала с направления излучения, обнаружение на каждом цикле излучения - приема эхосигналов на выходе сформированной характеристики направленности с определением их частот, вычисление средней частоты всех эхосигналов, обнаруженных на всех циклах излучения - приема, с использованием которой вычисляется скорость судна, отличающийся тем, что при обнаружении каждого эхосигнала дополнительно к определению его частоты определяется время его обнаружения относительно времени излучения зондирующего сигнала.

2. Способ по п. 1, отличающийся тем, что оценки частот и времен обнаружения эхосигналов, обнаруженных на разных циклах излучения - приема, перед осреднением подвергаются траекторному анализу, в результате которого эхосигналы, отраженные от дна, отделяются от эхосигналов, отраженных от звукорассеивающих слоев.

3. Способ по п. 2, отличающийся тем, что осреднение частот эхосигналов выполняется отдельно для эхосигналов, отраженных от дна, и эхосигналов, отраженных от каждого водного звукорассеивающего слоя.



 

Похожие патенты:

Изобретение относится к измерительной технике, в частности к способам измерения путевой скорости транспортных средств с использованием эффекта Доплера для электромагнитных волн.

Изобретение относится к медицинской технике, а именно к ультразвуковым системам диагностической визуализации. Система формирует отображения спектральной допплерографии потока для анатомических местоположений, выбранных из изображения от цветового картирования потока и содержит зонд с массивом ультразвуковых преобразователей, формирователь лучей, который управляет направлениями, в которых лучи передаются зондом, допплеровский процессор, дисплей, на котором одновременно отображаются изображения цветового допплеровского картирования потока и спектральной допплерографии, пользовательский элемент управления, процессор положения и угла отклонения цветовой рамки, реагирующий на допплеровские сигналы для автоматического изменения положения цветовой рамки в изображении цветового допплеровского картирования потока относительно потока в кровеносном сосуде, когда пользователь манипулирует элементом управления, осуществляя перемещение из одного указанного положения в другое.

Изобретение относится к области морской навигации и судовождения по ведущему кабелю, а также к подводным навигационным системам с гидроакустическими маяками-ответчиками, и может быть использовано для разработки технических средств навигационного обеспечения, связи и управления надводных и подводных объектов навигации в стесненных условиях плавания, преимущественно в арктических и прилегающих к ним акваториях, в частности на Северном морском пути (СМП).

Использование: изобретение относится к области гидроакустики и может быть использовано для измерения параметров положения объекта, обнаруженного на дне с использованием гидролокатора ближнего действия.

Использование: изобретение относится к области гидроакустики и может быть использовано для измерения высоты объекта над уровнем дна. Сущность: гидроакустический способ определения пространственных характеристик объекта, содержащий излучение зондирующего сигнала в момент времени t, приема эхосигнала tэхо, определяется дистанция D до объекта по величине временной задержки и известной скорости распространения звука С, после излучения измеряют уровень объемной реверберации U0, определяют порог обнаружения Uпор., измеряют tнач время начала эхосигнала, при котором впервые амплитуда эхосигнала Аоб превысила порог Аоб>Uпор и определяют дистанцию D0=0,5 С tнач, измеряют момент времени последней амплитуды эхосигнала tпос, при котором минимальная амплитуда эхосигнала от объекта Аоб>Uпор, определяют момент времени начала тени tтени, при котором выполняется условие U0≥Атен и tтени>tпос, определяют момент времени окончания тени tкон.т, при котором Uпор>Аоб≥U0, определяют дистанцию до момента окончания тени Dтени=0,5 С tкон.т, определяют глубину от гидролокатора до дна Hдна, а высоту объекта определяют по формуле .

Изобретение относится к области гидроакустики и может быть использовано для построения систем классификации обнаруженных объектов гидролокатором освещения ближней обстановки.

Использование: изобретение относится к области гидроакустики и может быть использовано при разработки гидроакустической аппаратуры, предназначенной для освещения подводной обстановки.

Изобретение относится к области гидроакустики и может быть использовано для измерения глубины погружения приводняющегося объекта с использованием гидролокатора ближнего действия, установленного на движущемся носителе, относительно горизонта движения носителя.

Изобретение относится к области гидроакустических лагов, предназначенных для измерения скорости морского объекта. .

Изобретение относится к измерительной технике и может быть использовано для определения скорости течения и направления жидкости в электропроводящих средах, преимущественно в морской воде.

Изобретение относится к области кораблевождения, а именно к способам и устройствам измерения абсолютной скорости судна. Решаемая техническая проблема - уменьшение погрешности измерения собственной скорости судна и увеличение предельной глубины работы лага без увеличения цены и габаритов аппаратуры. Технический результат заключается в повышении помехоустойчивости и уменьшении погрешности измерения абсолютной скорости судна при помощи доплеровского лага. Указанный технический результат достигается формированием четырехлучевой ХН излучающей антенны по схеме Янус без дополнительных максимумов за счет применения специального фазового распределения на элементах антенны, суть которого состоит в разбиении антенны, аналогично шахматной доске, условно на белые и черные квадраты, каждый из которых включает по четыре расположенных по углам квадрата излучающих элемента, при этом на все элементы белых квадратов и на все элементы черных квадратов подаются синфазные сигналы, с той лишь разницей, что сигналы, подаваемые на элементы черных квадратов, являются противофазными относительно сигналов, подаваемых на элементы белых квадратов. 4 ил.
Наверх