Волноводное устройство для измерения параметров жидкостей

Изобретение относится к области СВЧ-техники и может быть использовано для измерения и контроля жидкостей, в частности водных растворов и суспензий веществ химической и биологической природы в различных технологических процессах, исследованиях структуры водных растворов, определения влагосодержания углеводородов, в том числе и «на потоке», а также в биофизических исследованиях. Конструкция резонансной измерительной камеры отличается возможностью надежной и устойчивой механической перестройки и подбора оптимальной связи резонатора с волноводным трактом. Перестраиваемая волноводно-диэлектрическая камера для контроля жидкостей включает разборную волноводную камеру. Прилегающая к фланцу волноводного тракта вставка содержит резьбовое гнездо для емкостного штыря, который представляет собой цилиндрический проводник, установленный по направлению силовых линий напряженности электрического поля Е и соединенный одним концом с широкой стенкой волновода. Между вставкой и фланцем волновода имеется неглубокая канавка, вдоль которой может перемещаться полоска тонкого металла в виде резонансной (индуктивно-емкостной) диафрагмы. Размеры и расположение диафрагмы выбираются таким образом, чтобы в волноводном устройстве получить взаимное уничтожение волн, отраженных от конца волновода и от диафрагмы. Волноводная вставка содержит сквозное отверстие для диэлектрической трубки, в которую заливается измеряемая жидкость. Гладкая пластина закрывает сквозное отверстие волновода и является короткозамыкателем тракта. С помощью перемещения тонкой диафрагмы, а также емкостного штыря добиваются максимального значения добротности резонаторной измерительной системы, что регистрируется по величине амплитуды резонансной кривой на экране. Разность амплитуд резонансной кривой при последовательных измерениях показывает изменение концентрации вещества в исследуемой жидкости, связанной с изменением величины диэлектрической проницаемости. 1 з.п. ф-лы, 1 ил.

 

Изобретение относится к области микроволновой диэлектрометрии и может быть использовано для определения концентраций веществ в водных растворах в целях контроля влаги в углеводородных смесях, загрязнения водных сред, концентрации биологических клеток в суспензиях.

Известны конструкции устройств для измерения поглощения жидкостью в диэлектрическом капилляре электромагнитного излучения микроволнового диапазона. В устройстве, предложенном в работе [Виноградов Е.А., Ирисова Н.А., Прохоров A.M. и др. Спектрометр для измерения поглощения электромагнитного излучения жидкостью А.с. СССР №1432394, МПК G01N 22/00] измерительная кювета с рабочим веществом выполнена в виде капилляра с электродами, вмонтированными в его торцы и соединенными с синхронным детектором. При этом капилляр устанавливается при настройке параллельно вектору плоскости поляризации электрического поля микроволнового излучения. Уровень поглощения микроволнового излучения жидкостью в капиллярной трубке определяется в данном случае по изменению электропроводности жидкости.

Недостатком данного метода является необходимость использования открытого резонатора, который не позволяет сконцентрировать микроволновое излучение в такой же степени, как закрытый металлический волновод. Следовательно, имеют место потери энергии излучения, приводящие к снижению чувствительности измерений поглощения.

Следующей конструкцией измерительного устройства, более близкого к предлагаемому, является капиллярная кювета, представляющая собой тонкостенную тефлоновую трубку в волноводе, которая использовалась для исследования водных растворов [Беляков Е.В., Храпко А. Ячейка для измерения параметров жидких диэлектриков. А.с. СССР №1307315, МПК G01N 22/00]. Недостатком данной конструкции по сравнению с предложенной является отсутствие возможности подстройки резонансной системы, что препятствовало использованию данного устройства для измерения диэлектрических характеристик широкого ряда сильнопоглощающих жидкостей.

Прототипом предлагаемого устройства является конструкция резонатора, отличающаяся возможностью перестройки геометрических размеров широкой стенки волновода в виде поршней с отверстиями для диэлектрической капиллярной трубки, в которую помещена измеряемая жидкость [Беляков Е.В. Измерительный СВЧ-резонатор для диэлектриков с большими потерями. А.с. СССР №1307315, МПК G01N 22/00]. Измерение диэлектрических характеристик жидкостей с помощью данного устройства выполняется следующим образом. В радиопрозрачный капилляр, пронизывающий широкую стенку металлического прямоугольного волновода, наливается исследуемая жидкость. Затем с помощью подвижных поршней добиваются максимального значения добротности резонаторной измерительной системы, что регистрируется по величине амплитуды резонансной кривой на экране. Разность амплитуд резонансной кривой при последовательных измерениях показывает изменение концентрации вещества в бинарной или же многокомпонентной исследуемой жидкости, связанной с изменением величины диэлектрической проницаемости. Более высокая чувствительность измерений наблюдается при измерениях уровня сигнала на склоне резонансной кривой. В этом случае оценивается смещение пика резонансной кривой по шкале частот, что повышает чувствительность измеряемого параметра жидкости, связанного также с изменением величины диэлектрической проницаемости.

Перемещение поршней перпендикулярно плоскости широкой стенки волновода осуществляется с помощью регулировочных винтов. Несмотря на высокие технические характеристики устройства, его работа отличается крайней нестабильностью, связанной с механической неустойчивостью элементов конструкции, что приводит к нестабильности результатов измерения амплитуды резонансной кривой отраженного СВЧ-сигнала.

Технический результат, получаемый при использовании предлагаемого устройства, заключается в уменьшении искажения формы резонансной кривой отраженного СВЧ-сигнала за счет улучшения контакта контролируемой жидкости, помещенной в диэлектрический капилляр с волноводным измерительным устройством, что приводит к повышению точности и чувствительности измерений.

Технический результат достигается тем, что волноводное устройство выполняется разъемным. Прилегающая к фланцу волноводного тракта вставка содержит резьбовое гнездо для емкостного штыря, который представляет собой цилиндрический проводник, установленный по направлению силовых линий напряженности электрического поля Е и соединенный одним концом с широкой стенкой волновода. При некоторой длине штыря, близкой к λ0/4, проводимость последовательного контура обращается в бесконечность и волновод закорачивается. Между вставкой и фланцем волновода имеется неглубокая канавка, вдоль которой может перемещаться полоска тонкого металла в виде резонансной (индуктивно-емкостной) диафрагмы. Размеры и расположение диафрагмы выбираются таким образом, чтобы в волноводном устройстве получить взаимное уничтожение волн, отраженных от конца волновода и от диафрагмы. Волноводная вставка содержит сквозное отверстие для диэлектрической трубки, в которую заливается измеряемая жидкость. Гладкая пластина закрывает сквозное отверстие волновода и является короткозамыкателем тракта. С помощью перемещения тонкой диафрагмы, а также емкостного штыря добиваются максимального значения добротности резонаторной измерительной системы, что регистрируется по величине амплитуды резонансной кривой на экране. Разность амплитуд резонансной кривой при последовательных измерениях показывает изменение концентрации вещества в исследуемой жидкости, связанной с изменением величины диэлектрической проницаемости. Более высокая чувствительность измерений наблюдается при измерениях уровня сигнала на склоне резонансной кривой. В этом случае оценивается смещение пика резонансной кривой по шкале частот, что повышает чувствительность измеряемого параметра жидкости, связанного также с изменением величины диэлектрической проницаемости. Таким образом, предложены регулировочные элементы, совместное действие которых обеспечивает максимальную добротность резонатора для каждой концентрации вещества в исследуемой жидкости и обеспечивающие стабильность результатов измерений диэлектрических параметров контролируемой жидкости.

На фиг. 1 представлена конструкция волноводного устройство для измерения параметров жидкости, где 1 - волновод СВЧ-тракта; 2 - подвижная индуктивно-емкостная диафрагма; 3 - диэлектрическая трубка; 4 - измеряемая жидкость; 5 - короткозамыкающая пластина; 6 - емкостный штырь.

Измерение диэлектрических характеристик жидкостей с помощью данного устройства выполняется следующим образом. В диэлектрическую, трубку (3), пронизывающую широкую стенку металлического прямоугольного волновода (1), наливается исследуемая жидкость (4). Затем с помощью настроечных элементов - резонансной диафрагмы (2) и емкостного штыря (6), добиваются максимального значения добротности резонаторной измерительной системы, что регистрируется по величине амплитуды резонансной кривой на экране. Разность амплитуд резонансной кривой при последовательных измерениях показывает изменение концентрации вещества в исследуемой жидкости, связанной с изменением величины диэлектрической проницаемости. Более высокая чувствительность измерений наблюдается при измерениях уровня сигнала на склоне резонансной кривой. В этом случае оценивается смещение пика резонансной кривой по шкале частот, что повышает чувствительность измеряемого параметра жидкости, связанного также с изменением величины диэлектрической проницаемости.

Таким образом, предлагаемое техническое решение позволяет использовать регулировочные элементы, совместное действие которых обеспечивает максимальную добротность резонатора для каждой концентрации вещества в исследуемой жидкости и обеспечивает повышение чувствительности результатов измерений диэлектрических параметров контролируемой жидкости. Кроме того, упрощается конструкция устройства за счет исключения настроечных поршней с дифференциальными винтами, фторопластовыми шайбами, зубчатыми колесами и спиральными пружинами, уменьшаются габариты устройства и его вес в несколько раз и, следовательно, должна снижаться себестоимость измерительного узла.

1. Волноводное устройство для измерения параметров жидкости, включающее расположенную перпендикулярно широким стенкам волновода СВЧ-тракта волноводную камеру, содержащую сквозное отверстие с диэлектрической трубкой, отличающееся тем, что волноводная камера выполнена разборной, содержит вставку, прилегающую к фланцу СВЧ-тракта, во вставке выполнена канавка, в которой расположена подвижная индуктивно-емкостная диафрагма из тонкого металла, к вставке и волноводному отверстию камеры прилегает металлическая гладкая пластина, выполняющая функцию короткозамыкателя.

2. Волноводное устройство для измерения параметров жидкости по п. 1, отличающееся тем, что вставка содержит резьбовое гнездо, в котором размещен емкостной штырь, представляющий собой цилиндрический проводник, установленный по направлению силовых линий напряженности электрического поля Е и соединенный одним концом с широкой стенкой волновода.



 

Похожие патенты:

Настоящее изобретение относится к области нелинейной радиолокации и может быть использовано при разработке нелинейных радиолокаторов (НРЛ), осуществляющих поиск объектов, имеющих в своем составе нелинейные элементы (НЭ).

Использование: для обнаружения диэлектрических взрывчатых веществ, скрытых под одеждой на теле человека и в носимом багаже. Сущность изобретения заключается в том, что выполняют облучение контролируемой области когерентным СВЧ-излучением на N частотах, регистрацию сигнала, несущего информацию о скрытом объекте, находящемся в контролируемой области пространства, с помощью одного или более параллельных каналов регистрации и когерентную обработку зарегистрированного сигнала, причем регистрацию сигнала, несущего информацию о скрытом объекте, находящемся в контролируемой области пространства, осуществляют после прохождения сигналом этой области, затем определяют зависимость заданной функции от х - координаты по оси, соединяющей регистратор и источник СВЧ-излучения, при этом определяют значение хmax, при котором функция F имеет максимальное значение Fmax, устанавливают F0 - пороговое значение, и при Fmax<F0 констатируют присутствие проводящего объекта в контролируемой области пространства, при Fmax>F0 и xmax>xпороговое, где xпороговое - установленное минимальное значение размеров объекта, констатируют присутствие диэлектрического объекта в контролируемой области пространства, а при Fmax>F0 и xmax<xпороговое констатируют отсутствие объектов в контролируемой области пространства.

Изобретение относится к измерительной технике и может быть применено для определения состояния поверхности дорожного полотна, на котором возможно образование слоя воды, снега или льда.

Использование: для контроля потоков неоднородных диэлектрических веществ. Сущность изобретения заключатся в том, что устройство для измерения физических свойств вещества в потоке содержит на измерительном участке волноводный резонатор, через сквозные отверстия в противоположных торцах которого вдоль его продольной оси пропущен диэлектрический трубопровод с контролируемым диэлектрическим веществом, подсоединенные к данному резонатору с помощью элементов связи генератор электромагнитных колебаний и электронный блок, при этом волноводный резонатор выполнен в виде прямоугольного волноводного резонатора, в котором возбуждены колебания типа H10n, n=1, 2, …, и в котором у каждой из его узких стенок установлена диэлектрическая вставка с тем же поперечным размером, что и у прямоугольного резонатора, ее продольный размер имеет величину , где L - длина резонатора в продольной плоскости, ε - диэлектрическая проницаемость материала каждой вставки.

Предлагаемые способ и устройство относятся к технике обнаружения взрывчатых и наркотических веществ, в частности к способам и устройствам обнаружения взрывчатых и наркотических веществ в различных закрытых объемах и на теле человека, находящегося в местах массового скопления людей.

Изобретение относится к медицинской технике. Устройство для диагностики заболеваний бронхолегочной системы содержит управляемый генератор высокой частоты (3), аналого-цифровой преобразователь (9), блок управления (4), блок регистрации и отображения результатов измерений (2), блок генерации и измерения (1), основной (6), опорный (7) и приемный (8) каналы.

Изобретение относится к области СВЧ-техники и может быть использовано для определения концентраций веществ в водных растворах, в том числе для контроля влаги в углеводородных смесях, при контроле загрязнения водных сред, при контроле концентрации биологических клеток в суспензиях.

Использование: для дистанционного досмотра багажа. Сущность изобретения заключается в том, что выполняют облучение контролируемой области пространства когерентным СВЧ-излучением на наборе частот, регистрацию сигнала после прохождения сигналом этой области с помощью нескольких каналов регистрации и обработку зарегистрированного сигнала, который несет информацию о диэлектрических объектах в багаже, при этом облучение области СВЧ-излучением осуществляют несколькими передающими элементами, расположенными в различных точках пространства, а при обработке зарегистрированного сигнала определяют множество значений удлинения оптического пути, соответствующих определенной паре излучатель-регистратор на наборе частот, затем вычисляют распределение плотности удлинения оптического пути в конкретной области пространства, выделяют непрерывные трехмерные участки с близкими по значению плотностями удлинения оптического пути, затем для каждого выделенного участка вычисляют среднюю плотность удлинения ρ оптического пути, положение и размеры диэлектрического объекта, находящегося в багаже, в системе координат (x, y, z), диэлектрическую проницаемость ε диэлектрического объекта в сечении одной из плоскостей системы координат, причем диэлектрическую проницаемость вычисляют по заданной математической формуле, задают значения εниж и εверх, которые характерны для опасных диэлектрических объектов, и при εниж<ε<εверх констатируют присутствие опасного диэлектрического объекта в контролируемой области пространства.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения физических свойств диэлектрических жидкостей, в том числе плотности, концентрации смесей, влагосодержания и т.д., при этом исследуемые жидкости находятся в измерительных ячейках или перекачиваются по трубопроводу.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения физических свойств, например, плотности, концентрации смесей, влагосодержания и др., различных диэлектрических жидкостей, находящихся в электромагнитном поле волновода.
Наверх