Способ определения расхода жидкости в трубопроводе

Предлагаемый способ относится к измерительной технике и может быть использован для измерения расхода жидкости с применением трибоэлектрического эффекта и электромагнитного явления. Устройство, реализующее предлагаемый способ, содержит трубопровод 1, ферритовое кольцо 2, обмотку 3, помещенную в экран 4 с щелью 5, измерительный блок 6, усилитель 7, регистратор 8, измерительный участок 9, металлические кольца 10 и направляющие лопатки 11. Технический результат - повышение точности и чувствительности к малым расходам жидкости путем создания большей турбулентности движущейся жидкости и повышения ее поляризации. 2 ил.

 

Предлагаемый способ относится к измерительной технике и может быть использован для измерения расхода жидкости с применением трибоэлектрического эффекта и электромагнитного явления.

Известны способы определения расхода жидкости, основанные на использовании трибоэлектрического эффекта и электромагнитного явления (авт.свид. СССР №172.073, 224.826, 317.902, 1.185.090, 1.185.093, 1.394.041, 1.482.264, 1.649.279, 1.812.433; патенты РФ №2.005.995, 2.023.985, 2.084.833, 2.190.833, 2.511.638; патенты США №4.210.022, 4.339.958, 4.704.907; патенты Великобритании №1.165.398, 2.166.550; патент ФРГ №2.756.873; патент Японии №56-54.566; Кремлевский П.П. Расходомеры и счетчики количества. Л.: Машиностроение, 1989; Никитин В.И. Современные проблемы измерения малых расходов жидкости и газа. Измерительная техника, 1982, №2 и другие).

Из известных способов наиболее близким к предлагаемому является «Способ определения расхода жидкости в трубопроводе» (патент РФ №2.190.833 G01F 1/58, 2000), который и выбран в качестве прототипа.

Данный способ основан на использовании трибоэлектрического эффекта и электромагнитного явления. Трибоэлектрический эффект заключается в том, что при трении жидкости о внутреннюю поверхность измерительного участка трубопровода, выполненного из полимерного материала с высокой трибоэлектрической способностью, протекающая жидкость заряжается отрицательно, а измерительный участок - положительно. При этом форма внутреннего сечения измерительного участка 9 трубопровода 1 в виде сужающихся и расширяющихся конусов обеспечивает увеличение степени трибоэлектризации и повышенный заряд протекающей жидкости. Однако противоположные заряды снижают степень поляризации протекающей жидкости. Для нейтрализации положительных зарядов измерительный участок 9 трубопровода 1 снабжают механическим заземлением 10.

Для создания большей турбулентности движения жидкости и повышения ее поляризации внутри измерительного участка 9 трубопровода 1 можно установить направляющие лопатки.

Технической задачей изобретения является повышение точности и чувствительности к малым расходам жидкости путем создания большей турбулентности движущейся жидкости и повышения ее поляризации.

Поставленная задача решается тем, что способ определения расхода жидкости в трубопроводе, заключающийся, в соответствии с ближайшим аналогом, в том, что выделяют напряженность поля в любой точке по периметру измерительного сечения трубопровода, связанную с электрическим зарядом жидкости, преобразуют ее с помощью трансформатора тока, охватывающего трубопровод, в электрический сигнал, пропорциональный расходу, при этом измерительный участок трубопровода выполняют из полимерного материала с высокой трибоэлектрической способностью и внутренним переменным сечением, имеющим форму последовательно соединенных сужающихся и расширяющихся конусов, и снабжают его металлическим заземлением, обеспечивая тем самым высокую степень поляризации движущейся жидкости, отличается от ближайшего аналога тем, что измерительный участок трубопровода снабжают направляющими лопатками, которые устанавливают в начале измерительного участка, обеспечивая тем самым закручивание движущейся жидкости и повышенную степень ее поляризации.

Предлагаемый способ основан на использовании трибоэлектрического эффекта и электромагнитного эффекта. Трибоэлектрический эффект заключается в том, что при трении жидкости о внутреннюю поверхность измерительного участка трубопровода, выполненного из полимерного материала с высокой трибоэлектрической способностью, протекающая жидкость заряжается отрицательно, а измерительный участок - положительно. При этом форма внутреннего сечения измерительного участка трубопровода в виде последовательно соединенных сужающихся и расширяющихся конусов обеспечивает увеличение степени трибоэлектризации и повышенный заряд протекающей жидкости.

Степень поляризации значительно возрастает на измерительном участке трубопровода и за счет второго фактора, вызванного закручиваем движущейся жидкости по винтообразной траектории. Это повышает степень турбулентности и поляризации движущейся жидкости, что объясняется тем, что почти все внутренние слои жидкости начинают соприкасаться с внутренней поверхностью измерительного участка. Однако положительные (противоположные) заряды снижают степень поляризации протекающей жидкости. Для нейтрализации положительных зарядов измерительный участок трубопровода снабжают металлическим заземлением.

Следовательно, движущаяся жидкость представляет собой систему движущихся отрицательных зарядов и является током (конвективным), вокруг которого возникает магнитное поле, величина которого пропорциональна скорости (расходу) измеряемой жидкости. В этом проявляется электромагнитное явление.

Предлагаемый способ реализуется устройством, структурная схема которого представлена на фиг. 1. На фиг. 2 изображен разрез трубопровода 1 и ферритового кольца 2.

Устройство содержит трубопровод 1, на котором коаксиально установлено ферритовое кольцо 2 с обмоткой 3, помещенной в экран 4 с щелью 5. Обмотка 3 подключена к измерительному блоку 6, состоящему из усилителя 7 и регистратора 8. Трубопровод 1 содержит измерительный участок 9, выполненный из полимерного материала с высокой трибоэлектрической способностью и внутренним переменным сечением, имеющим форму последовательно соединенных сужающихся и расширяющихся конусов, и снабженный металлическим заземлением.

Сильную положительную трибоэлектрическую зарядную тенденцию имеют многие полимерные материалы, например политетрафторэтилен, нейлон и другие. В качестве металлического заземления используют металлические кольца 10, имеющие контакт с землей. В начале измерительного участка 9 установлены направляющие лопатки 11, обеспечивающие закручивание движущейся жидкости и повышенную степень ее поляризации.

Предлагаемый способ осуществляют следующим образом.

Движущаяся жидкость со скоростью V трется о внутреннюю стенку трубопровода 1. Вследствие трибоэлектрического эффекта возникает разность потенциалов. При этом движущаяся жидкость электризуется с отрицательным знаком электрических зарядов. Одновременно с этим на внутренней стенке трубопровода 1 образуются заряды противоположного знака по сравнению со знаком заряда движущейся жидкости. Степень поляризации значительно возрастает на измерительном участке 9 трубопровода 1 за счет двух факторов.

Первый фактор обусловлен тем, что измерительный участок 9 выполнен из полимерного материала и с внутренним переменным сечением, имеющим форму последовательно соединенных сужающихся и расширяющихся конусов. В качестве такого материала может быть использован нейлон, политетрафторэтилен и другие полимеры.

Второй фактор обусловлен тем, что в начале измерительного участка 9 установлены направляющие лопатки 11, которые обеспечивают закручивание движущейся жидкости по винтообразной траектории. Это повышает степень турбулентности и поляризации движущейся жидкости, что объясняется тем, что все внутренние слои жидкости начинают соприкасаться с внутренней поверхностью измерительного участка 9.

Образующиеся положительные заряды нейтрализуют некоторые отрицательные заряды жидкости в соответствии с законом Кулона, что значительно снижает степень поляризации движущейся жидкости. Для нейтрализации положительных зарядов измерительный участок 9 трубопровода 1 снабжен заземленными механическими кольцами 10. Заряды положительного знака внутренней поверхности измерительного участка 9 трубопровода 1 стекают сначала на металлические кольца 10, а затем на землю. Движущаяся жидкость представляет собой систему движущихся отрицательных зарядов и является током (конвективным), вокруг которого возникает магнитное поле, величина которого пропорциональна скорости V (расходу) измеряемой жидкости.

Величина напряженности магнитного поля H равна

,

где I - величина конвективного тока;

r - расстояние от поверхности трубопровода до его оси.

При движении жидкости по трубопроводу 1 возникает переменное магнитное поле вокруг измерительного участка 9 трубопровода 1. Это поле создает в обмотке 3, намотанной на ферритовое кольцо 2, ЭДС. Сигнал с выхода обмотки 3 поступает на вход измерительного блока 6, в котором сигнал усиливается в усилителе 7 и фиксируется в регистраторе 8. Величина сигнала пропорциональна скорости V (расходу) жидкости.

Таким образом, предлагаемый способ по сравнению с прототипом и другими техническими решениями аналогичного назначения обеспечивает повышение точности и чувствительности к малым расходам жидкости. Это достигается созданием большей турбулентности движущейся жидкости и повышением ее поляризации за счет закручивания движущейся жидкости по винтообразной траектории. Указанное обстоятельство объясняется тем, что почти все внутренние слои движущейся жидкости начинают соприкасаться с внутренней поверхностью измерительного участка 9 трубопровода 1.

Способ определения расхода жидкости в трубопроводе, заключающийся в том, что выделяют напряженность магнитного поля в любой точке по периметру измерительного сечения трубопровода, связанную с электрическим зарядом жидкости, преобразуют ее с помощью трансформатора тока, охватывающего трубопровод, в электрический сигнал, пропорциональный расходу, при этом измерительный участок трубопровода выполняют из полимерного материала с высокой трибоэлектрической способностью и внутренним переменным сечением, имеющим форму последовательно соединенных сужающихся и расширяющихся конусов, и снабжают его металлическим заземлением, обеспечивая тем самым высокую степень поляризации движущейся жидкости, отличающийся тем, что измерительный участок трубопровода снабжают направляющими лопатками, которые устанавливают в начале измерительного участка, обеспечивая тем самым закручивание движущейся жидкости и повышенную степень ее поляризации.



 

Похожие патенты:

Изобретение относится к приборостроению, а именно к технике измерения расхода жидких металлов с помощью электромагнитного способа, т.е. способа, основанного на взаимодействии движущейся жидкости с магнитным полем.

Изобретение относится к приборостроению, а именно к технике измерения расхода жидких металлов с помощью электромагнитного способа, т.е. способа, основанного на взаимодействии движущейся жидкости с магнитным полем.

Изобретение относится к ядерно-магнитный расходомеру (1) для определения расхода текущей через измерительную трубу (2) среды, с устройством (4) создания магнитного поля, измерительным устройством (5) и антенным устройством (6) с антенной (7).

Изобретение относится к измерительной технике, в частности к электромагнитным устройствам для измерения расхода трубопроводах больших диаметров, и может быть использовано в счетчиках воды и теплосчетчиках.

Изобретение относится к электромагнитным расходомерам. Электромагнитный расходомер (12) для измерения потока технологической текучей среды включает в себя корпус (40) измерителя, имеющий сформированное в нем отверстие.

Изобретение относится к электромагнитным расходомерам. Электромагнитный расходомер (12) для измерения потока технологической текучей среды включает в себя корпус (40) измерителя, имеющий сформированное в нем отверстие.

Предлагается узел (10) расходомерной трубы для магнитного расходомера. Узел (10) расходомерной трубы содержит трубу (12), проходящую от первого монтажного фланца (14) до второго монтажного фланца (16).

Изобретение относится к области измерительной техники и может быть использовано для определения расхода электропроводящих жидких сред с помощью электромагнитного расходомера с погружными датчиками локальной скорости.

Индукционный расходомер относится к электромагнитным устройствам для измерения жидких металлов по степени деформации магнитного поля в канале трубы. Индукционный расходомер жидкого металла, основанный на измерении степени деформации магнитного поля в канале, обусловленной движением жидкого металла, содержит первичный преобразователь и измерительное устройство, причем первичный преобразователь имеет трубу, индуктор, создающий магнитное поле в канале трубы, две встречно включенные индикаторные катушки, воспринимающие деформацию эпюры магнитного поля, и, по крайней мере, две силовые катушки, производящие обратную деформацию эпюры магнитного поля.

Изобретение относится к способам и устройствам для определения расхода потока и/или фазного элемента различных компонентов в потоке многофазного флюида. Датчик многофазного расходомера задействуется для определения физической характеристики, относящейся к потоку многофазного флюида в канале многофазного расходомера.
Наверх