Способ определения структуры гидроакустического поля техногенных подводных объектов от воздушного шума внутри корпуса

Изобретение относится к области гидроакустики и может быть использовано для измерения структуры гидроакустического поля (ГАП), зависимостей ГАП от угла в пространстве и от расстояния до подводных объектов. Техническим результатом настоящего изобретения является: возможность получения данных о структуре ГАП в отсутствие влияния границ, гидролого-акустических условий и на значительных расстояниях от объекта; уменьшение материальных, финансовых и временных затрат на проведение измерений; возможность проведения измерений практически на любых акваториях; возможность определения вклада только от воздушного шума внутри объекта. Технический результат достигается за счет того, что в известном способе вместо антенных решеток в районе определения структуры ГАП располагают источник звуковых импульсов, например, взрыв малого заряда ВВ, с известным объемным ускорением; на подводном объекте, расположенном в выбранном районе акватории, регистрируют акустический отклик от излучения импульсного источника внутри воздушного объема подводного объекта, затем в процессе обработки находят передаточную характеристику излучения объекта в район расположения импульсного источника, далее измеряют ГАП; для определения угловых зависимостей излучения располагают объект под разными углами относительно импульсного источника, например, с помощью его движения по окружности (циркуляции), повторяют излучение импульсного источника и измерение ГАП каждый раз при нахождении объекта под нужным углом, при этом до проведения измерений в акватории располагают объект и импульсный источник так, чтобы разности во временах прихода отраженных от границ импульсов, по сравнению с прямым были бы максимальными; используя только акустический импульсный отклик, возбужденный прямым сигналом от импульсного источника, при соответствующей обработке получают значения ГАП объекта без влияния границ среды (в безграничном пространстве). 1 з.п. ф-лы.

 

Изобретение относится к области гидроакустики и может быть использовано для измерения (уточнения) структуры гидроакустического поля (ГАП), в том числе - зависимостей ГАП от угла в пространстве и от расстояния до объекта.

Известен способ (прототип) определения ГАП объектов на акваториях, полигонах, включающий проведение измерения структуры ГАП с помощью стационарных антенных решеток, располагаемых вертикально и(или) горизонтально, возможно на дне водоема, с регистрацией сигналов от антенн на берегу (Клей К., Медвин Г. Акустическая океанография. Основы и применения. Издательство «Мир», М., 1980, с. 525-526).

Установка на дне или в водном слое вертикальных и горизонтальных антенных систем значительно увеличивает стоимость измерений структуры ГАП, привязывает их к конкретному полигону, а также ограничивает область измерений ГАП дальностью действия аппаратных средств измерительных комплексов.

Недостатком вышеуказанного способа является сложность непосредственного измерения структуры поля в безграничном пространстве при нахождении объекта в водном слое. Вместе с тем возможность измерений поля для безграничного пространства является практически важной, поскольку позволяет выполнить пересчет структуры поля на любые расстояния от объекта, учесть влияние границ и реальных гидролого-акустических условий. Кроме того, определение ГАП известным способом характеризуется существенными материальными и финансовыми издержками (установка и обслуживание антенных систем, прокладка кабельных сетей до береговых строений и строительство измерительных постов с необходимой береговой инфраструктурой).

Техническим результатом настоящего изобретения является повышение эффективности, а именно:

- возможность получения данных о структуре ГАП в отсутствие влияния границ, гидролого-акустических условий и на значительных расстояниях от объекта;

- уменьшение материальных, финансовых и временных затрат на проведение измерений;

- возможность проведения измерений практически на любых акваториях;

- возможность определения ГАП только от вклада воздушного шума внутри объекта.

Технический результат достигается за счет того, что в известном способе вместо антенных решеток в районе определения структуры ГАП располагают источник коротких звуковых импульсов, например, взрывного типа, с известным объемным ускорением; на подводном объекте, расположенном в выбранном районе акватории, регистрируют акустический отклик от излучения импульсного источника внутри воздушного объема подводного объекте, затем в процессе обработки находят передаточную характеристику излучения объекта в районе расположения импульсного источника как отношение спектра усредненного акустического отклика звукового давления внутри корпуса объекта к спектру объемного ускорения источника звуковых импульсов, далее определяют ГАП, для определения угловых зависимостей излучения располагают объект под разными углами относительно импульсного источника, например, с помощью его движения по окружности (циркуляции) и повторяют излучение импульсного источника и определение ГАП каждый раз при нахождении объекта под нужным углом.

Сущность изобретения заключается в том, что реализуют определение структуры ГАП техногенных подводных объектов в водной среде (акватории, полигоне) от воздушного шума внутри корпуса, для чего располагают объект в среде на выбранном расстоянии от импульсного источника звука, устанавливают импульсный источник таким образом, чтобы разница во времени прихода к объекту отраженных от границ среды акустических импульсов по сравнению с прямым была бы максимальной. Это позволяет при соответствующей обработке получать значения ГАП объекта без влияния границ (в безграничном пространстве). Затем излучают звуковой импульс и регистрируют акустический отклик (звуковое давление) внутри воздушного объема объекта.

При обработке получают передаточную характеристику, которая, согласно принципу взаимности, равна отношению спектра акустического отклика к спектру объемного ускорения импульсного источника с учетом коэффициента, зависящего от объема воздушного внутреннего пространства объекта и времени реверберации объема, а ГАП определяют перемножением передаточной характеристики на спектр усредненного звукового давления внутри воздушного объема объекта, далее получают значения ГАП для различных углов облучения объекта и строят угловые зависимости ГАП объекта в выбранных частотных полосах, как в условиях безграничного пространства. При этом угол излучения определяемого спектра ГАП объекта равен, по принципу взаимности, соответствующему углу облучения. Для получения оценки ГАП с учетом влияния границ среды для измерений используется акустический отклик, включающий сумму прямого импульса и отраженных от границ среды.

1. Способ определения структуры гидроакустического поля техногенных подводных объектов от воздушного шума внутри корпуса, включающий проведение измерения структуры ГАП с помощью стационарных антенных решеток, располагаемых вертикально и (или) горизонтально, возможно на дне водоема, с регистрацией сигналов от антенн на берегу, отличающийся тем, что в районе измерений ГАП в точке измерения вместо антенных решеток располагают источник коротких звуковых импульсов с известным объемным ускорением; на подводном объекте, расположенном в выбранном районе акватории, регистрируют акустический отклик от излучения импульсного источника внутри воздушного объема подводного объекта, затем в процессе обработки находят передаточную характеристику излучения объекта в районе расположения импульсного источника, которая равна отношению спектра акустического отклика к спектру объемного ускорения импульсного источника с учетом коэффициента, зависящего от объема воздушного внутреннего пространства объекта и времени реверберации объема, а ГАП определяют перемножением передаточной характеристики на спектр усредненного звукового давления внутри воздушного объема объекта, для определения угловых зависимостей излучения располагают объект под разными углами относительно импульсного источника, например, с помощью его движения по окружности (циркуляции) и повторяют излучение импульсного источника и определение ГАП каждый раз при нахождении объекта под нужным углом, а после завершения испытаний освобождают акваторию от объекта и импульсного источника.

2. Способ по п. 1, отличающийся тем, что до проведения измерений ГАП в безграничной среде объект и импульсный источник располагают в акватории так, чтобы разности во временах прихода отраженных от границ импульсов по сравнению с прямым были бы максимальными; используя только акустический импульс, возбужденный прямым сигналом от импульсного источника, при соответствующей обработке получают значения ГАП объекта без влияния границ (в безграничном пространстве).



 

Похожие патенты:

Изобретение относится к области строительства и касается конструктивного выполнения прибора, обеспечивающего измерение и регистрацию ускорений колебаний почвы и объектов в широком диапазоне частот и ускорений от самых незначительных и до превышающих lg, на которых предусмотрено размещение как инженерно-сейсмометрических станций, так и станций мониторинга технического состояния несущих конструкций зданий и сооружений.

Изобретение относится к области сейсмологии и может быть использовано для прогнозирования землетрясений. Сущность: в контролируемой зоне устанавливают прибор, обеспечивающий регистрацию газоразрядной визуализации воздуха на поверхности среды.

Изобретение относится к способу многоканальной регистрации сейсмических колебаний на инженерно-сейсмометрической станции и может быть использовано для регистрации сейсмических явлений на строительных объектах при землетрясениях, вызывающих повреждения зданий и сооружений.

Изобретение относится к области строительства, а именно к цифровым инженерно-сейсмометрическим станциям, которые могут быть использованы также и для регистрации сейсмических явлений на строительных объектах при сильных землетрясениях, имеющих систему мониторинга технического состояния зданий или сооружений.

Изобретение относится к области геофизики. Заявлен переключатель, приводимый в действие перепадом давления, содержащий механизм, реагирующий на давление, для обеспечения реакции на давление в ответ на перепад давления и исполнительный привод устройства, выполненный для взаимодействия с механизмом, реагирующим на давление, и для использования реакции на давление механизма, реагирующего на давление, для приведения устройства в действие.

Изобретение относится к области геологии, а именно к прогнозу распределения рапоносных структур с аномально высоким давлением флюидов (АВПД) в геологическом разрезе осадочного чехла платформ и областей их сочленения с краевыми прогибами.

Изобретение относится к области геофизики и может быть использовано для измерения микродеформаций земной коры на дне морей и океанов и изучения пространственно-временной структуры геофизических полей инфразвукового и звукового диапазонов.

Изобретение относится к области геофизики и может быть использовано для сейсмоакустических исследований на шельфе при выполнении разведочных работ нефтегазоносных месторождений.

Изобретение относится к измерительной технике, в частности к многокомпонентному измерению акустических сигналов, и может найти применение в подводных сейсмологических и сейсморазведочных работах, в исследованиях морской фауны, для контроля судоходства.

Изобретение относится к области геофизики и может быть использовано при проведении морских сейсморазведочных работ. Варианты осуществления изобретения предусматривают способы, системы и устройство для экономии энергии при проведении донной сейсморазведки.
Изобретение относится к области гидроакустики и может быть использовано для измерения (уточнения) структуры гидроакустического поля (ГАП), в том числе - зависимостей ГАП от угла в пространстве и от расстояния до объекта. Техническим результатом настоящего изобретения является повышение эффективности, а именно: возможность получения данных о структуре ГАП в отсутствие влияния границ, гидролого-акустических условий и на значительных расстояниях от объекта; уменьшение материальных, финансовых и временных затрат на проведение измерений; возможность проведения измерений практически на любых акваториях; возможность определения вкладов от различных источников ГАП внутри объекта. Технический результат достигается за счет того, что в известном способе вместо антенных решеток в районе определения структуры ГАП располагают источник звуковых импульсов, например взрыв малого заряда ВВ, с известным объемным ускорением; на подводном объекте, расположенном в выбранном районе акватории, регистрируют вибрационный отклик от излучения импульсного источника в месте действия известной динамической силы, затем в процессе обработки находят передаточную характеристику излучения объекта в район расположения импульсного источника, далее измеряют ГАП; для определения угловых зависимостей излучения располагают объект под разными углами относительно импульсного источника, например, с помощью его движения по окружности (циркуляции), повторяют излучение импульсного источника и измерение ГАП каждый раз при нахождении объекта под нужным углом, при этом до проведения измерений в акватории располагают объект и импульсный источник так, чтобы разности во временах прихода отраженных от границ импульсов по сравнению с прямым были бы максимальными; используя только вибрационный импульс, возбужденный прямым сигналом от импульсного источника, при соответствующей обработке получают значения ГАП объекта без влияния границ среды (в безграничном пространстве). 1 з.п. ф-лы.

Изобретение относится к способам прогнозирования селевой опасности. Сущность: оценивают спектральный состав и поляризационные характеристики микросейсмического шума в пределах локального участка селеопасной зоны. Прогнозируют приближение селевого потока по увеличению доли высокочастотной компоненты сигнала в спектральном окне 20-50 Гц и изменению поляризации микросейсмического шума. Технический результат: определение приближения селя. 2 ил.

Изобретение относится к приспособлениям для приемников сейсмических сигналов, а именно к тестерам, обеспечивающим проверку правильности работы одного или группы сейсмоприемников (СП) электродинамических. Заявлен тестер сейсмоприемников электродинамических, который содержит блок КИ контроллера интерфейсного, снабженный входом для подключения источника ИП питания и включающий модуль МУ управления, блок БЦП цифрового преобразования, снабженный входом для подключения источника ИП питания и включающий аналого-цифровой преобразователь АЦП и генератор ТГ тестовых сигналов, подключенные к модулю МУ управления. Согласно решению блок КИ контроллера интерфейсного включает сетевой интерфейс СИ, термодатчик ТД и формирователь ФПП переходного процесса, подключенные к модулю МУ управления. Блок БЦП цифрового преобразования включает блок БКУ коммутации и усиления, снабженный входами, подключенными к модулю МУ управления, формирователю ФПП переходного процесса, генератору ТГ тестовых сигналов и аналого-цифровому преобразователю АЦП, а также входами для подключения одного или нескольких тестируемых сейсмоприемников. Технический результат - повышение точности работы тестера. 4 ил.
Изобретение относится к области геологии и может быть использовано для разведки месторождений углеводородов в шельфовой зоне. Заявлен способ комплексной системы поиска и разведки месторождений углеводородов сейсмическими и электромагнитными методами в шельфовой зоне, который осуществляется с использованием донных сейсмических станций, обеспечивающих измерение по 4 каналам (3 геофона: Χ, Y, Z, и 1 гидрофон) и регистрацию всех типов волн, устанавливаемых на дне вдоль профиля наблюдения с помощью высокопрочной веревки с отрицательной плавучестью, на которой установлены узлы крепления станции. Вдоль профиля дополнительно устанавливают электроразведочные станции с донными приемными линиями, обеспечивающими измерение электрической составляющей электромагнитного поля в пунктах рядом с сейсмическими станциями на расстоянии не менее 5 м от ближайшей станции и заданной кратностью установки датчиков в зависимости от масштаба съемки (сейсмических/электроразведочных) от 20/1 до 5/1. Производят синхронизацию возбуждения сейсмического и электромагнитного полей по минимальному влиянию электромагнитного источника тока на геофоны. Выполняют обработку всех каналов раздельно и совместную (комплексную) интерпретацию сейсмических и электроразведочных данных, по результатам которой судят о наличии залежи углеводородов. Технический результат - повышение эффективности разведочных мероприятий.

Изобретение относится к области геологии и может быть использовано при поисках месторождений углеводородов на шельфе. Согласно предложенному методу поиска месторождений углеводородов в акваториях для идентификации аномалий, обнаруженных по данным сейсморазведки и электроразведки, дополнительно на профиле устанавливают донные станции с ионоселективными электродами, избирательно реагирующими на ионы тяжелых металлов (Сu, Рb и Cd), аномалии которых при отсутствии мешающих ионов (Ag и Hg) свидетельствуют о связи с залежью углеводородов и индицируют аномалии повышенного частотного поглощения сейсмических волн в сейсмических структурах и пониженной проводимости и/или поляризуемости, пространственно коррелирующиеся с аномалиями ионов тяжелых металлов и не теряющие эту корреляцию в течение определенных периодов суточного мониторинга. Совмещают все выделенные аномалии и по форме и расположению аномалий относительно сейсмических структур оконтуривают залежь углеводородов. Технический результат – повышение надежности идентификации аномалий и, соответственно, надежности обнаружения месторождений углеводородов на шельфе. 1 табл.
Наверх