Способ трансформации тепловой энергии в электроэнергию двухцилиндровым свободнопоршневым энергомодулем с теплообменником и линейным электрогенератором



Способ трансформации тепловой энергии в электроэнергию двухцилиндровым свободнопоршневым энергомодулем с теплообменником и линейным электрогенератором
Способ трансформации тепловой энергии в электроэнергию двухцилиндровым свободнопоршневым энергомодулем с теплообменником и линейным электрогенератором

Владельцы патента RU 2655684:

Рыбаков Анатолий Александрович (RU)

Изобретение относится к энергомашиностроению. Технический результат состоит в обеспечении максимальной эффективности трансформации тепловой энергии в электроэнергию при неравномерном подводе тепла к теплообменнику. Тепловая энергия от топки подводится к теплообменнику и нагревает воздух во внутренней полости теплообменника. Система управления отслеживает величину температуры и давления воздуха в теплообменнике. В момент времени, когда температура и давление воздуха в теплообменнике достигнет введенного в систему управления предела максимальной величины давления и температуры воздуха, система управления открывает впускные клапаны цилиндра. Через них воздух из теплообменника поступает в рабочие полости поршней. Под действием давления воздуха поршни начинает движение из крайних точек схождения в крайние точки расхождения. Из компрессорных полостей поршней через обратные клапаны пневмоаккумулятора воздух поступает в пневмоаккумулятор. Магнитный поток статорного магнита линейного электрогенератора замыкается через якоря линейного электрогенератора. В результате движения якорей линейного электрогенератора площади примыкающих друг к другу их поверхностей уменьшаются, соответственно изменяется протекающий через якоря линейного электрогенератора и статорный магнит линейного электрогенератора магнитный поток, и в катушке линейного электрогенератора генерируется импульс электроэнергии. В момент времени прибытия поршней в крайние точки расхождения система управления закрывает впускные клапаны и открывает выпускные клапаны цилиндра. Якоря линейного электрогенератора с разноименными полюсами притягиваются друг к другу, и поршни, двигаясь встречно, занимают исходное для генерирования импульса электроэнергии положение. Отработавший воздух из компрессорных полостей поршней через открытые выпускные клапаны вытесняется в атмосферу, а через впускные обратные клапаны воздух из атмосферы засасывается в компрессорные полости поршней. Воздух из пневмоаккумулятора через обратный клапан пневмоаккумулятора поступает в теплообменник, в котором происходит очередной цикл нагрева воздуха с последующим генерированием очередного импульса электроэнергии в статорной катушке линейного электрогенератора. 1 ил.

 

ОБЛАСТЬ ТЕХНИКИ

Изобретение относится к области энергомашиностроения.

УРОВЕНЬ ТЕХНИКИ

Ближайший прототип заявленного изобретения - патент РФ 2550228 «Электрический генератор переменного тока с двигателем Стирлинга».

Основной недостаток устройства по патенту РФ 2550228 состоит в том, что частота колебаний рабочего поршня, соединенного со штоком, напрямую зависит от интенсивности подводимого тепла в «горячую» полость цилиндра и ,следовательно, эффективность преобразования кинетической энергии рабочего поршня и штока в электроэнергию также напрямую зависит от интенсивности подводимого тепла в «горячую» полость цилиндра.

ЦЕЛЬ ЗАЯВЛЕННОГО ИЗОБРЕТЕНИЯ

Цель заявленного изобретения состоит в обеспечении максимальной эффективности трансформации тепловой энергии в электроэнергию при неравномерном подводе тепла к теплообменнику.

СУЩНОСТЬ ЗАЯВЛЕННОГО ИЗОБРЕТЕНИЯ

Способ трансформации тепловой энергии в электроэнергию двухцилиндровым свободнопоршневым энергомодулем с теплообменником и линейным электрогенератором состоит в следующем.

Тепловая энергия от топки, лучистая энергия Солнца и т.д. подводится к теплообменнику 1 и нагревает воздух во внутренней полости теплообменника 1. Система управления отслеживает величину температуры и давления воздуха в теплообменнике 1. В момент времени, когда температура и давление воздуха в теплообменнике 1 достигнут введенного в систему управления предела максимальной величины давления и температуры воздуха, система управления открывает впускные клапаны цилиндра 2, 3. Максимальная величина давления и температуры воздуха в теплообменнике 1 выбирается из соображения прочностных характеристик материала теплообменника 1. Воздух из теплообменника 1 через впускные клапаны цилиндра 2, 3 поступает в рабочие полости поршней 4, 5. Под действием давления воздуха поршни 4, 5 начинают движение из крайних точек схождения в крайние точки расхождения. Из компрессорных полостей поршней 4, 5 через обратные клапаны пневмоаккумулятора 6, 7 воздух поступает в пневмоаккумулятор 8. Магнитный поток статорного магнита линейного электрогенератора 9 (статорный магнит линейного электрогенератора может быть постоянным магнитом или электромагнитом) замыкается через якоря линейного электрогенератора 10 и 11. В результате движения якорей линейного электрогенератора 10, 11 площади примыкающих друг к другу их поверхностей уменьшаются, соответственно, изменяется протекающий через якоря линейного электрогенератора 10 и 11 и статорный магнит линейного электрогенератора 9 магнитный поток, и в катушке линейного электрогенератора 12 генерируется импульс электроэнергии. В момент времени прибытия поршней 4, 5 в крайние точки расхождения система управления закрывает впускные клапаны цилиндра 2, 3 и открывает выпускные клапаны цилиндра 13, 14. Якоря линейного электрогенератора 10, 11 с разноименными полюсами притягиваются друг к другу, и поршни 4, 5, двигаясь встречно, занимают исходное для генерирования импульса электроэнергии положение. Отработавший воздух из компрессорных полостей поршней 4, 5 через открытые выпускные клапаны цилиндра 13, 14 вытесняется в атмосферу, а через впускные обратные клапаны 15, 16 воздух из атмосферы засасывается в компрессорные полости поршней 4, 5. Воздух из пневмоаккумулятора 8 через обратный клапан пневмоаккумулятора 17 поступает в теплообменник 1, в котором происходит очередной цикл нагрева воздуха с последующим генерированием очередного импульса электроэнергии в статорной катушке линейного электрогенератора 12. Таким образом, обеспечивается максимальная эффективность преобразования тепловой энергии в электроэнергию при неравномерном подводе тепла к теплообменнику 1.

РАСКРЫТИЕ ЗАЯВЛЕННОГО ИЗОБРЕТЕНИЯ

Способ трансформации тепловой энергии в электроэнергию двухцилиндровым свободнопоршневым энергомодулем с теплообменником и линейным электрогенератором, включающим теплообменник, систему управления, впускные клапаны цилиндра, поршни, обратные клапаны пневмоаккумулятора, пневмоаккумулятор, статорный магнит линейного электрогенератора, якоря линейного электрогенератора, катушку линейного электрогенератора, выпускные клапаны цилиндра, впускные обратные клапаны и клапан пневмоаккумулятора, отличается тем, что тепловая энергия от топки подводится к теплообменнику и нагревает воздух во внутренней полости теплообменника, система управления отслеживает величину температуры и давления воздуха в теплообменнике, в момент времени, когда температура и давление воздуха в теплообменнике достигнут введенного в систему управления предела максимальной величины давления и температуры воздуха, система управления открывает впускные клапаны цилиндра, воздух из теплообменника через впускные клапаны цилиндра поступает в рабочие полости поршней, под действием давления воздуха поршни начинают движение из крайних точек схождения в крайние точки расхождения, из компрессорных полостей поршней через обратные клапаны пневмоаккумулятора воздух поступает в пневмоаккумулятор, магнитный поток статорного магнита линейного электрогенератора замыкается через якоря линейного электрогенератора, в результате движения якорей линейного электрогенератора площади примыкающих друг к другу их поверхностей уменьшаются, соответственно, изменяется протекающий через якоря линейного электрогенератора и статорный магнит линейного электрогенератора магнитный поток, и в катушке линейного электрогенератора генерируется импульс электроэнергии, в момент времени прибытия поршней в крайние точки расхождения система управления закрывает впускные клапаны и открывает выпускные клапаны цилиндра, якоря линейного электрогенератора с разноименными полюсами притягиваются друг к другу, и поршни, двигаясь встречно, занимают исходное для генерирования импульса электроэнергии положение, отработавший воздух из компрессорных полостей поршней через открытые выпускные клапаны вытесняется в атмосферу, а через впускные обратные клапаны воздух из атмосферы засасывается в компрессорные полости поршней, воздух из пневмоаккумулятора через обратный клапан пневмоаккумулятора поступает в теплообменник, в котором происходит очередной цикл нагрева воздуха с последующим генерированием очередного импульса электроэнергии в статорной катушке линейного электрогенератора.

ОСУЩЕСТВЛЕНИЕ ЗАЯВЛЕННОГО ИЗОБРЕТЕНИЯ

Затраты на НИОКР заявленного изобретения не могут существенно отличаться от таковых при проектировании классических тепловых машин.

ГРАФИЧЕСКИЙ МАТЕРИАЛ

На чертеже представлена принципиальная схема двухцилиндрового свободнопоршневого энергомодуля с оппозитным движением поршней, линейным электрогенератором и теплообменником, где 1 - теплообменник; 2, 3 - поршень; 4, 5 - якорь линейного электрогенератора; 6 - катушка линейного электрогенератора; 7 - статорный магнит линейного электрогенератора; 8, 9 - впускной клапан; 10, 12 - выпускной обратный клапан; 11 - пневмоаккумулятор; 13, 14 - выпускной клапан; 15, 16 - впускной обратный клапан; 17 - обратный клапан пневмоаккумулятора.

Способ трансформации тепловой энергии в электроэнергию двухцилиндровым свободнопоршневым энергомодулем с теплообменником и линейным электрогенератором, включающим теплообменник, систему управления, впускные клапаны цилиндра, поршни, обратные клапаны пневмоаккумулятора, пневмоаккумулятор, статорный магнит линейного электрогенератора, якоря линейного электрогенератора, катушку линейного электрогенератора, выпускные клапаны цилиндра, впускные обратные клапаны и клапан пневмоаккумулятора, отличающийся тем, что тепловая энергия от топки подводится к теплообменнику и нагревает воздух во внутренней полости теплообменника, система управления отслеживает величину температуры и давления воздуха в теплообменнике, в момент времени, когда температура и давление воздуха в теплообменнике достигнут введенного в систему управления предела максимальной величины давления и температуры воздуха, система управления открывает впускные клапаны цилиндра, воздух из теплообменника через впускные клапаны цилиндра поступает в рабочие полости поршней, под действием давления воздуха поршни начинают движение из крайних точек схождения в крайние точки расхождения, из компрессорных полостей поршней через обратные клапаны пневмоаккумулятора воздух поступает в пневмоаккумулятор, магнитный поток статорного магнита линейного электрогенератора замыкается через якоря линейного электрогенератора, в результате движения якорей линейного электрогенератора площади примыкающих друг к другу их поверхностей уменьшаются, соответственно, изменяется протекающий через якоря линейного электрогенератора и статорный магнит линейного электрогенератора магнитный поток, и в катушке линейного электрогенератора генерируется импульс электроэнергии, в момент времени прибытия поршней в крайние точки расхождения система управления закрывает впускные клапаны и открывает выпускные клапаны цилиндра, якоря линейного электрогенератора с разноименными полюсами притягиваются друг к другу, и поршни, двигаясь встречно, занимают исходное для генерирования импульса электроэнергии положение, отработавший воздух из компрессорных полостей поршней через открытые выпускные клапаны вытесняется в атмосферу, а через впускные обратные клапаны воздух из атмосферы засасывается в компрессорные полости поршней, воздух из пневмоаккумулятора через обратный клапан пневмоаккумулятора поступает в теплообменник, в котором происходит очередной цикл нагрева воздуха с последующим генерированием очередного импульса электроэнергии в статорной катушке линейного электрогенератора.



 

Похожие патенты:

Изобретение относится к электротехнике и может быть использовано в агрегатах и приводных механизмах с быстрым и точным автоматическим остановом при работе приводного электродвигателя в одном направлении, т.е.

Изобретение относится к электротехнике, к электромеханическим преобразователям энергии, и может быть использовано в качестве преобразователя механической энергии вращения, например энергии ветра, подаваемой на механический вход машины, и электрической энергии постоянного тока, например световой энергии Солнца, преобразованной фотоэлектрическими преобразователями в электроэнергию постоянного тока, одновременно подаваемой на ее электрический вход, в суммарную электрическую энергию переменного тока.

Изобретение относится к энергомашиностроению. Технический результат состоит в повышении эффективности преобразования тепловой энергии в электроэнергию при неравномерном подводе тепла к теплообменнику.

Изобретение относится к энергомашиностроению. Технический результат состоит в повышении эффективности преобразования.

Изобретение относится к электротехнике. Технический результат состоит в повышении стабильности и к.п.д.

Изобретение относится к мотор-колесам. Колесо содержит средство для выработки и передачи энергии, вращающееся кольцо, неподвижную пластину, первый и второй вспомогательные приводные механизмы и колпаки колеса.

Изобретение относится к электромашиностроению и может быть использовано для преобразования энергии возобновляемых источников. Технический результат заключается в повышении стабильности параметров.

Изобретение относится к конструкциям поворотных приводов. Электромеханический поворотный привод содержит корпус, имеющий первый конец, проходящий до второго конца через промежуточный участок, задающий продольную ось, и внутреннюю полость.

Изобретение относится к электрической машине (1), содержащей кожух (7) машины, статор (11) и ротор (10), который установлен на валу (4) двигателя, который поддерживается на неприводной стороне в подшипниковом узле (14), который содержит комплект шариковых подшипников (21, 22) и расположен внутри кожуха машины (7) радиально упруго и с возможностью незначительного смещения.

Изобретение относится к электротехнике, к электромеханическим преобразователям энергии, и может быть использовано в качестве преобразователя механической энергии вращения, например энергии ветра, подаваемой на механический вход машины, и электрической энергии постоянного тока, например световой энергии Солнца, преобразованной фотоэлектрическими преобразователями в электроэнергию постоянного тока, одновременно подаваемой на ее электрический вход, в суммарную электрическую энергию переменного тока.

Изобретение относится к электротехнике, к электромеханическим преобразователям энергии, и может быть использовано в качестве преобразователя механической энергии вращения, например энергии ветра, подаваемой на механический вход машины, и электрической энергии постоянного тока, например световой энергии Солнца, преобразованной фотоэлектрическими преобразователями в электроэнергию постоянного тока, одновременно подаваемой на ее электрический вход, в суммарную электрическую энергию переменного тока.

Изобретение относится к энергомашиностроению. Технический результат состоит в повышении эффективности преобразования тепловой энергии в электроэнергию при неравномерном подводе тепла к теплообменнику.

Изобретение относится к энергомашиностроению. Технический результат состоит в повышении эффективности преобразования тепловой энергии в электроэнергию при неравномерном подводе тепла к теплообменнику.

Изобретение относится к области электротехники, в частности к ветроэнергетике. Технический результат – повышение удельной мощности.

Изобретение относится к области электротехники и может быть использовано для определения скорости вращения и положения ротора электрогенератора, входящего в состав стартер-генератора с возможностью самодиагностики.

Изобретение относится к области электротехники. Технический результат - снижение осевой нагрузки, создаваемой давлением охлаждающего газа.

Изобретение относится к энергомашиностроению. Технический результат состоит в повышении эффективности преобразования.

Изобретение относится к энергомашиностроению. Технический результат состоит в повышении эффективности преобразования.

Изобретение относится к энергомашиностроению. Технический результат состоит в повышении эффективности преобразования тепловой энергии в электроэнергию при неравномерном подводе тепла к теплообменнику.
Наверх