Боеприпас неконтактного действия с дистанционным лазерным взрывателем

Изобретение относится к области вооружений, в частности к неконтактным взрывателям боеприпасов, и может быть использовано в боеприпасах ствольной нарезной артиллерии для определения оптимального момента подрыва боеприпаса. Боеприпас неконтактного действия с дистанционным лазерным взрывателем содержит корпус с взрывчатым веществом, взрыватель, источник питания, детонатор, предохранительно-взводящий механизм и оптический датчик цели. Оптический датчик цели содержит один приемоизлучающий канал, при этом оптическая ось фотоприемника направлена параллельно или практически параллельно к продольной оси боеприпаса по направлению движения, а оптическая ось импульсного источника оптического излучения - лазерного диода - направлена под углом к продольной оси боеприпаса по направлению движения, причем плоскость, перпендикулярная длинной стороне излучающей площадки лазерного диода, направлена параллельно или практически параллельно к продольной оси боеприпаса. Угол между продольной осью фотоприемника и оптической осью импульсного источника оптического излучения - лазерного диода - определяют из указанного в формуле изобретения математического выражения. Перед фотоприемником установлена оптическая линза с оптической силой, определяемой из указанного в формуле изобретения математического выражения. Изобретение позволяет уменьшить количество приемоизлучающих каналов с сохранением эффективности поражения цели, с обеспечением подрыва на оптимальной дистанции от цели малокалиберных снарядов ствольной нарезной артиллерии. 1 з.п. ф-лы, 2 ил.

 

Предлагаемое изобретение относится к области вооружений, в частности к неконтактным взрывателям боеприпасов и может быть использовано в боеприпасах ствольной нарезной артиллерии для определения оптимального момента подрыва боеприпаса.

Известен оптический дистанционный взрыватель (патент ФРГ №2949521, МПК: F42C 13/02, опубл. 21.10.82), состоящий из источника оптического излучения, работающего в пульсирующем режиме, коллимирующей и фокусирующей линз и фотоприемника.

Фотоприемник установлен таким образом, что ось диаграммы направленности источника оптического излучения пересекает ось диаграммы чувствительности фотоприемника на определенном расстоянии от боеприпаса, в результате чего дистанционный взрыватель срабатывает только при наличии цели на заданном расстоянии. Излучение от источника проходит через коллимирующую линзу, отражается от поверхности цели и, если она находится на заданном расстоянии от боеприпаса, через фокусирующую линзу попадает на фотоприемник, который преобразует оптический сигнал в электрический и производит его дальнейшую обработку.

Недостатком этого устройства является низкая вероятность обнаружения малогабаритных целей и, в результате чего, низкая надежность срабатывания по целям такого типа, а также невысокая точность установки заданной дальности срабатывания, поскольку пересечение осей диаграммы направленности источника оптического излучения и диаграммы чувствительности фотоприемника на определенном расстоянии от боеприпаса обеспечивается только технологически. Кроме этого данное устройство имеет значительные габаритные размеры и недостаточную защищенность от оптических помех.

Наиболее близким по технической сущности является боеприпас неконтактного действия с дистанционным лазерным взрывателем (патент РФ №2484423, МПК: F42C 13/02, опубл. 10.06.2013), содержащий корпус с взрывчатым веществом, взрыватель, в корпусе которого размещены источник питания, детонатор, предохранительно-взводящий механизм и соединенный с указанным механизмом оптический датчик цели. Оптический датчик цели содержит электронный блок, два приемоизлучающих канала, каждый из которых содержит импульсный источник оптического излучения и фотоприемник, соединенные с электронным блоком. Оптические оси импульсного источника оптического излучения и фотоприемника, образующие приемоизлучающий канал, направлены под углом ≤90° к продольной оси боеприпаса по направлению движения и расположены со смещением друг относительно друга параллельно или практически параллельно. Расстояние между оптическими осями излучателя и фотоприемника выбрано из условия l≤(dи+dп)/2, где dи и dп - наибольшие диаметры излучателя и фотоприемника соответственно. Приемоизлучающие каналы размещены вокруг продольной оси боеприпаса через равные или практически равные угловые промежутки в радиальном направлении, что повышает эффективность поражения цели, осуществляя подрыв на оптимальной дистанции от цели.

Недостатком этого устройства является значительное количество приемоизлучающих каналов, каждый из которых включает электронный блок, импульсный источник оптического излучения и фотоприемник, что затрудняет применение для малокалиберных снарядов ствольной артиллерии, а также высокая трудоемкость изготовления и стоимость.

Задачей настоящего изобретения является уменьшение количества приемоизлучающих каналов с сохранением эффективности поражения цели, с обеспечением подрыва на оптимальной дистанции от цели малокалиберных снарядов ствольной нарезной артиллерии.

Технический результат, обусловленный поставленной задачей, достигается тем, что в боеприпасе неконтактного действия с дистанционным лазерным взрывателем, содержащим корпус с взрывчатым веществом, взрыватель, источник питания, детонатор, предохранительно-взводящий механизм и оптический датчик цели, в отличие от известного, оптический датчик цели содержит один приемоизлучающий канал, при этом оптическая ось фотоприемника направлена параллельно или практически параллельно к продольной оси боеприпаса по направлению движения, а оптическая ось импульсного источника оптического излучения - лазерного диода, направлена под углом к продольной оси боеприпаса по направлению движения, причем плоскость, перпендикулярная длинной стороне излучающей площадки лазерного диода, направлена параллельно или практически параллельно к продольной оси боеприпаса, а в боеприпасе имеют место соотношения:

;

где αи - угол между продольной осью фотоприемника и оптической осью импульсного источника оптического излучения - лазерного диода;

- угловая расходимость излучения лазерного диода в плоскости, перпендикулярной длинной стороне излучающей площадки;

N - число рабочих циклов измерения дистанции;

- угловая расходимость излучения лазерного диода в плоскости, параллельной длинной стороне излучающей площадки;

- угловое перекрытие соседних по времени излучений между двумя рабочими циклами измерения дистанции.

Такой боеприпас неконтактного действия с дистанционным лазерным взрывателем обеспечивает уменьшение количества приемоизлучающих каналов с сохранением эффективности поражения цели.

Сущность изобретения по второму варианту заключается в том, что в боеприпасе неконтактного действия с дистанционным лазерным взрывателем, в отличие от известного, перед фотоприемником установлена оптическая линза, при этом выполняются следующие соотношения:

где Ол - оптическая сила линзы, установленной перед фотоприемником;

dфп - диаметр чувствительной площадки фотоприемника.

Такой боеприпас неконтактного действия с дистанционным лазерным взрывателем обеспечивает повышение эффективности поражения цели за счет более точного согласования диаграмм направленности фотоприемника и лазерного диода.

Схематическое изображение боеприпаса неконтактного действия с дистанционным лазерным взрывателем по варианту 1 показана на фигуре 1.

Боеприпас неконтактного действия с дистанционным лазерным взрывателем содержит корпус 1 с взрывчатым веществом 2, взрыватель 3, в корпусе которого размещены источник питания 4, детонатор 5, предохранительно-взводящий механизм 6, оптический датчик цели 7, содержащий, как минимум, два приемоизлучающих канала, состоящих из источника оптического излучения 8 и фотоприемника 9, соединенных с электронным блоком 10.

Боеприпас неконтактного действия с дистанционным лазерным взрывателем по варианту 2 содержит линзу, установленную перед фотоприемником 9.

Принцип действия боеприпаса неконтактного действия с дистанционным лазерным взрывателем по варианту 1 заключается в следующем.

Световые импульсы от источника излучения 8 выводятся наружу корпуса взрывателя 3. При наличии цели излучение отражается от ее поверхности и регистрируется фотоприемником 9.

Источником излучения 8 служит мощный импульсный полупроводниковый лазер, в варианте исполнения которого угол его излучения на уровне 0,5 без оптики составляет, например, 30° в плоскости, перпендикулярной длинной стороне излучающей площадки , и 10° в плоскости, параллельной длинной стороне излучающей площадки . Лазер крепится в головной части снаряда со смещением от центра, причем плоскость, перпендикулярная длинной стороне излучающей площадки лазерного диода, направлена параллельно или практически параллельно к продольной оси боеприпаса, а в боеприпасе имеют место соотношения:

;

где αи - угол между продольной осью фотоприемника и оптической осью импульсного источника оптического излучения - лазерного диода;

- угловая расходимость излучения лазерного диода в плоскости, перпендикулярной длинной стороне излучающей площадки;

N - число рабочих циклов измерения дистанции;

- угловая расходимость излучения лазерного диода в плоскости, параллельной длинной стороне излучающей площадки;

- угловое перекрытие соседних по времени излучений между двумя рабочими циклами измерения дистанции.

В варианте исполнения ось излучения лазера может иметь наклон к оси снаряда (αи), например, 12,5°. При вращении снаряда в полете зона облучения лазером является конусом с углом при вершине , равным в рассматриваемом варианте 55° (фигура 2).

Фотоприемник 9, в варианте, например, лавинного фотодиода, расположен в центре головной части снаряда. Поле зрения фотоприемника составляет, например, не менее 55°.

Электронный блок 10 может состоять из следующих элементов:

- драйвер питания лазера;

- трансимпедансный усилитель сигнала от лавинного фотодиода;

- контроллер управления лазером, обрабатывающий сигнал от фотодиода и выдающий сигнал на подрыв снаряда.

Для варианта размера цели - 1×1 м (цель типа вертолета, лобовая проекция) и требуемой дистанции до цели, расстояние до которой должно быть измерено, равной - 12 м, цель занимает угол, равный ~4,5°×4,5°.

Принимая угол излучения лазерного диода 8 по узкой стороне равным, например, 10°, приходим к выводу, что требуется по меньшей мере 360/10=36 отсчетов за один оборот снаряда.

Учитывая, что объект имеет угловой размер, требуется «перекрытие» соседних излучений на величину - угловое перекрытие соседних по времени излучений между двумя рабочими циклами измерения дистанции. В рассматриваемом варианте эта величина составит ~5°. Таким образом требуется обеспечить не менее 70 отсчетов за один оборот.

При частоте вращения снаряда 75000/мин получаем частоту измерения дальности 1250-70=88 КГц или максимальный интервал между измерениями - 11 мкс.

За один оборот снаряд пролетит расстояние порядка 1 м при скорости полета 1000 м/с. Это и будет дискрет измерения дальности в рассматриваемом варианте исполнения, причем при малой длительности излучения (не более 10 нс) смещением цели за время излучения можно пренебречь.

Принцип действия боеприпаса неконтактного действия с дистанционным лазерным взрывателем по варианту 2 заключается в следующем.

Перед фотоприемником устанавливается оптическая линза, обеспечивающая более точное согласование диаграмм направленности фотоприемника и лазерного диода, при этом выполняется следующее соотношение:

где Ол - оптическая сила линзы, установленной перед фотоприемником;

dфп - диаметр чувствительной площадки фотоприемника.

В варианте исполнения фотоприемник 9, например, лавинный фотодиод, расположен в центре головной части снаряда калибром, например 57 мм, и может иметь объектив диаметром до 20 мм, состоящий из одной линзы. Поле зрения фотоприемника должно составлять в рассматриваемом варианте не менее 55°.

Использование предложенного технического решения позволит создать боеприпас, обладающий повышенной эффективностью поражения цели, имеющий расширенную область применения для малокалиберной нарезной артиллерии.

1. Боеприпас неконтактного действия с дистанционным лазерным взрывателем, содержащий корпус с взрывчатым веществом, взрыватель, источник питания, детонатор, предохранительно-взводящий механизм и оптический датчик цели, отличающийся тем, что оптический датчик цели содержит один приемоизлучающий канал, при этом оптическая ось фотоприемника направлена параллельно или практически параллельно к продольной оси боеприпаса по направлению движения, а оптическая ось импульсного источника оптического излучения - лазерного диода - направлена под углом к продольной оси боеприпаса по направлению движения, причем плоскость, перпендикулярная длинной стороне излучающей площадки лазерного диода, направлена параллельно или практически параллельно к продольной оси боеприпаса, а в боеприпасе имеют место соотношения:

,

где αи - угол между продольной осью фотоприемника и оптической осью импульсного источника оптического излучения - лазерного диода, °,

θ - угловая расходимость излучения лазерного диода в плоскости, перпендикулярной длинной стороне излучающей площадки, °,

N - число рабочих циклов измерения дистанции,

θ|| - угловая расходимость излучения лазерного диода в плоскости, параллельной длинной стороне излучающей площадки, °,

Δθ|| - угловое перекрытие соседних по времени излучений между двумя рабочими циклами измерения дистанции, °.

2. Боеприпас неконтактного действия с дистанционным лазерным взрывателем по п. 1, отличающийся тем, что перед фотоприемником установлена оптическая линза, при этом выполняется следующее соотношение:

,

где Ол - оптическая сила линзы, установленной перед фотоприемником, дптр.,

dфп - диаметр чувствительной площадки фотоприемника, мм.



 

Похожие патенты:

Изобретение относится к светочувствительному взрывчатому составу (СВС) для снаряжения средств инициирования. Для получения светочувствительного взрывчатого состава с высокой селективной чувствительностью к импульсному лазерному излучению и одновременно высокой взрыво- и пожаро- безопасностью смешивают высокодисперсное термостойкое взрывчатое вещество (ВВ) с удельной поверхностью в диапазоне величин от ~2000 см2/г до ~20000 см2/г с температурой начала интенсивного разложения более 200°C и светочувствительный компонент алюминий в виде порошка с дисперсностью 50-200 нм в количестве от 0,5 до 2,0 мас.%.

Изобретение относится к вооружению и касается систем огневого поражения воздушных объектов зенитными артиллерийскими комплексами (ЗАК). Поражение малогабаритного летательного аппарата (МГЛА) заключается в поиске, обнаружении и сопровождении зенитно-артиллерийским комплексом (ЗАК), наведении ЗАК в направление прицеливания с учетом параметров полета МГЛА и характеристик ЗАК.

Изобретение относится к области вооружений и может быть использовано в неконтактных взрывателях различных боеприпасов. Оптический блок для обнаружения цели содержит последовательно установленные по ходу излучения источник оптического излучения, светоделитель, выполненный в виде двух неюстируемых плоских отражающих зеркал, коллимирующую линзу, фокусирующую линзу, светофильтр и фотоприемники.

Изобретение относится к инициированию зарядов взрывчатых веществ (ВВ). Устройство содержит инициируемое светочувствительное ВВ, источник света с источником питания, при этом светочувствительное ВВ соединено с источником света оптическим жгутом, а в качестве источника света использован лазерный диод, подключенный к источнику питания через управляемый электронный ключ со стабилизацией тока.

Изобретение относится к области вооружений и может быть использовано в неконтактных взрывателях боеприпасов. Способ приведения в действие инициатора газодинамического импульсного устройства включает обнаружение объекта.

Способ инициирования светочувствительного взрывчатого вещества световым импульсом лазерного излучения может использоваться в области физики взрыва, методов и средств неконтактного подрыва промышленных взрывчатых веществ (ВВ).

Изобретение относится к области радиоэлектроники и касается устройства инициирования. Устройство состоит из блока управления, содержащего источник питания, лазеры, и блока инициирования, содержащего преобразователь энергии лазерного излучения в напряжение и фотоэлектронный ключ.

Изобретение относится к взрывателям и может быть использовано для дистанционного инициирования взрывного устройства. Неконтактный взрыватель содержит корпус, в полости которого установлен источник тока, блок обработки сигнала, предохранительно-детонирующий механизм, включающий контактный узел и детонатор.

Изобретение относится к неконтактным взрывателям различных боеприпасов, срабатывающих от воздействия излучения оптического диапазона. Оптический блок неконтактного взрывателя боеприпаса содержит источник оптического излучения, коллимирующую линзу, фокусирующую линзу и фотоприемник.
Изобретение относится к области технологии производства оптических детонаторов на основе светочувствительного вещества - азида серебра и может быть использовано для регулирования порога срабатывания оптических детонаторов.

Изобретение относится к ракетам с динамическими помехами для различных их классов. Технический результат – повышение эффективности создания радиолокационных помех радиолокатору оборонительной системы объекта.

Группа изобретений относится к гранатам для ручным гранатометов. Технический результат – повышение надежности поражения противника за препятствием - укрытием.

Изобретение относится к устройству «батарея фейерверков», усовершенствованному для выполнения технологической задачи по точечной доставке красителей (или коагулянтов, или химических реактивов) и эффективной обработки заданного участка водной или земной поверхности, воздушного пространства, нуждающихся в немедленном воздействии человека для уменьшения, либо предотвращения последствий создавшейся критической ситуации.

Группа изобретений относится к ракетной технике, а именно к сверхзвуковым крылатым ракетам, предназначенным для поражения наземных целей, включая легкоуязвимые площадные наземные объекты, в том числе критичные по времени мобильные цели.

Группа изобретений относится к военной технике, а именно к активно-реактивным снарядам. Технический результат - увеличение высоты и вероятности поражения быстролетящей цели средствами противовоздушной и противоракетной обороны за счет улучшения полноты сгорания топлива, топливной эффективности и массо-габаритных характеристик высотного активно-реактивного снаряда.

Изобретение относится к боеприпасам, а именно к осколочно-фугасным снарядам. Технический результат – повышение эффективности действия снаряда.

Изобретение относится к боеприпасам, в частности к артиллерийским снарядам. Снаряд содержит корпус, взрыватель и взрывчатое вещество, при этом корпус выполнен из керамики, на которую намотаны концентричные слои растянутых параллельно лежащих волокон, ориентированных послойно под углом 0º, +45º, -45º к продольной оси снаряда, скрепленных между собой посредством полимерного связующего, волокна выполнены с поперечным сечением в виде равностороннего треугольника, при этом площадь поперечного сечения волокон уменьшается послойно в направлении от оси снаряда, а соседние волокна контактируют между собой взаимообращенными гранями.

Изобретение относится к пневматической мине нелетального действия, в которой в качестве поражающих элементов применены герметичная тканевая оболочка в виде усеченного конуса, наполняемая при срабатывании сжатым воздухом, и звуковые волны высокой частоты, генерируемые течением воздуха по газоводному каналу.

Изобретение относится к артиллерийскому вооружению, а именно к снарядам с газовым подвесом. Снаряд содержит гильзу с капсюлем, имеющим трубку с отверстием или отверстиями для прохода поджигающего пламени, боевую и направляющую часть.

Изобретение относится к боеприпасам, в частности к способам изготовления бронебойных пуль. Способ изготовления бронебойной пули включает создание или заострение режущих кромок на поверхности пули или бронебойного сердечника.

Изобретение относится к области вооружения, а именно к разработке боевых частей для боеприпасов (снарядов, гранат, мин) и ракет. Боевая часть состоит из корпуса, взрывателя, заряда и поражающих элементов, расположенных между корпусом и зарядом. При этом поражающие элементы изготовлены из керамического материала и выполнены в виде объемных многогранных фигур, соединенных между собой в единый блок, занимающий все пространство между зарядом и корпусом. Поражающие элементы выполнены в виде трех- или четырехгранных призм, соединенных между собой с помощью радиопрозрачного или радиопоглощающего клеевого материала, толщина слоя которого составляет 0,05–1 мм. Поражающие элементы могут быть соединены между собой перемычкой из основного материала. Поражающие элементы могут быть изготовлены из керамического материала на основе оксида алюминия или нитрида кремния. Корпус боевой части выполнен из базальтового волокна или другого радионезаметного материала. Технический результат заключается в повышении поражающей способности боевой части, а также обеспечении ее радионезаметности. 6 з.п. ф-лы, 5 ил.
Наверх