Способ получения сорбента для очистки питьевой воды

Изобретение относится к способу получения сорбентов, предназначенных для очистки питьевой воды. Способ получения сорбента включает приготовление пропиточного раствора, пропитку зерен активного угля и термическую обработку. Обработке подвергают активный уголь с насыпной плотностью 750-850 г/дм3, с размером микропор 1,50-1,60 нм, с размером зерен 0,2-1,0 мм. Пропитку осуществляют аммиачным раствором углекислой основной меди. Содержание меди в подученном сорбенте составляет 1,4-1,8 мас.% в пересчете на медь. Сорбент, полученный по предлагаемому способу, имеет активность по извлечению из воды цианида натрия 0,15-0,20 мг/г. 1 з.п. ф-лы, 3 пр.

 

Изобретение относится к способу получения сорбентов, предназначенных для очистки питьевой воды, и может быть использовано для очистки питьевой воды в домашних условиях, фильтрах для очистки воды коллективного пользования и системах очистки в полевых условиях.

Известен способ получения сорбента, включающий пропитку гранул активного угля раствором сульфата меди с концентрацией 230-340 г/дм3 до обеспечения содержания сульфата меди в готовом хемосорбенте от 23 до 30% мас., причем удаление влаги с поверхности пропитанного угля проводится путем обдувки воздухом, подаваемым со скоростью 3-5 м/сек (см. патент РФ №2323877, кл. С01 В01J 20/2, опубликованный 10.05.2008 г.). Недостатком данного изобретения является сложность проведения процесса для обеспечения высокого содержания меди в готовом продукте.

Наиболее близким к предложенному по технической сущности и количеству совпадающих признаков является способ получения сорбента для очистки питьевой воды, включающий пропитку активного угля с насыпной плотностью 410-480 г/дм3 и размером микропор 1,0-1,12 нм раствором углекислого или азотнокислого аммиаката серебра с концентрацией 0,1-0,5% мас., причем пропитку осуществляют при объемном соотношении уголь:раствор 1:(0,3-0,5), а термообработку проводят в печи кипящего слоя при температуре 120-250°С (см. патент №2145259 кл. В01J 20/20, С01В 31/08, 31/16, опубликованный 10.02.2000 г.).

Недостатком прототипа является низкая сорбционная способность при извлечении из воды цианида натрия.

Техническим результатом (целью изобретения) является повышение адсорбционной способности сорбента при извлечении из воды цианида натрия.

Поставленная цель достигается предложенным способом, включающим приготовление пропиточного раствора, пропитку зерен активного угля и термическую обработку, причем используют активный уголь с насыпной плотностью 750-850 г/дм3 и размером микропор 1,50-1,60 нм, а пропитку осуществляют аммиачным раствором углекислой основной меди, при этом содержание меди в сорбенте составляет 1,4-1,8% мас. в пересчете на медь, а размер зерен активного угля составляет 0,2-1,0 мм.

Отличие предлагаемого способа от прототипа состоит в том, что используют активный уголь с насыпной плотностью 750-850 г/дм3 и размером микропор 1,50-1,60 нм, а пропитку осуществляют аммиачным раствором углекислой основной меди, при этом содержание меди в сорбенте составляет 1,4-1,8% мас. в пересчете на медь, а размер зерен активного угля составляет 0,2-1,0 мм.

Авторам из патентной и научно-технической литературы не известен способ получения сорбента для очистки питьевой воды, в котором используется активный уголь с насыпной плотностью 750-850 г/дм3 и размером микропор 1,50-1,60 нм, а пропитку осуществляют аммиачным раствором углекислой основной меди, при этом содержание меди в сорбенте составляет 1,4-1,8% мас. в пересчете на медь, а размер зерен активного угля составляет 0,2-1,0 мм.

Сорбенты на основе активных углей используются в системах очистки питьевой воды на заключительных стадиях процесса водоподготовки, когда вода уже обработана окислителями и обеззараживающими реагентами типа хлора и озона, поэтому здесь главным требованием к сорбентам становится эффективное поглощение низкомолекулярных токсикантов (типа цианидов).

Следовательно, нужно использовать угольную основу, обеспечивающую хорошую кинетику поглощения. Количество и вид хемосорбционных добавок должны быть такими, чтобы, с одной стороны, не блокировать микропористую структуру, а, с другой стороны, эффективно осуществлять хемосорбцию и комплексообразование продуктов деструкции.

Способ осуществляют следующим образом. Готовят пропиточный раствор в следующей последовательности: в емкость заливается вода и водный аммиак, которые подогревают до 30-40°С. И затем, при перемешивании, добавляется углекислый аммоний в количестве, обеспечивающем концентрацию его 35-45 г/дм3. После этого раствор подогревают до 55-70°С и вводят при перемешивании основную углекислую медь в количестве, обеспечивающем ее концентрацию 55-65 г/дм3. Берут активный уголь с суммарным объемом пор, равным 0,20-0,25 см3/г, на основе антрацита с размером зерен 0,2-1,0 мм, насыпной плотностью 750-850 г/дм3 и размером микропор 1,50-1,60 нм, загружают его в аппарат типа бетономешалки, куда затем дозируют полученный раствор в количестве, равном 0,80-0,85 от суммарного объема пор активного угля. Перемешивание ведется в течение 10-15 минут, после чего пропитанный сорбент выгружают на вылеживание на открытом воздухе в течение 1,5-2,0 часов, затем проводят термическую обработку сорбента в печи кипящего слоя или вращающейся печи при температуре 120-145°С в течение 40-70 минут. Содержание меди в готовом сорбенте должно составлять от 1,4 до 1,8% мас., а влаги не более 3,0% мас.

Полученный сорбент имел адсорбционную активность по извлечению из воды цианида натрия (NaCN) при его исходной концентрации 1,0 мг/дм3 при температуре 20°С, равную 0,15-0,20 мг/г.

Пример 1. Берут активный уголь из антрацита марки ДАС ТУ 2568-390-04838763-2011, имеющий размер зерен 1,0 мм с насыпной плотностью 750 г/дм3, суммарным объемом пор 0,22 см3/г и размером микропор 1,5 нм; затем готовят пропиточный раствор добавлением в воду водного раствора аммиака, затем при нагревании до 35-40°С добавляют углекислый аммоний в количестве, обеспечивающем его концентрацию 35-45 г/дм3, и углекислую основную медь, нагревая раствор до температуры 55-70°С в количестве, обеспечивающем ее концентрацию в растворе 55-65 г/дм3, и подвергают термической обработке при температуре 120-145°С в течение 50-70 минут.

Полученный сорбент с содержанием 1,4% мас. в пересчете на медь имеет адсорбционную активность по извлечению из воды цианида натрия 0,15 мг/г.

Пример 2. Осуществление процесса как в примере 1, за исключением того, что берут активный уголь ДАС с размером зерен 0,2 мм, насыпной плотностью 850 г/дм3 и размером микропор 1,60 нм; полученный сорбент с содержанием меди 1,8% мас. в пересчете на медь имел адсорбционную активность по извлечению из воды цианида натрия 0,18 мг/г.

Пример 3. Осуществление процесса как в примере 1, за исключением того, что берут активный уголь ДАС с размером зерен 0,5 мм, насыпной плотностью 800 г/дм3 и размером микропор 1,55 нм. Полученный сорбент имел адсорбционную активность по извлечению из воды цианида натрия, равную 0,20 мг/г.

Сорбент для очистки питьевой воды, полученный по методу, изложенному в прототипе (пат. РФ №2145259), имел адсорбционную активность по цианиду натрия 0,09 мг/г.

Как показали многочисленные эксперименты, медь является наиболее эффективной хемосорбционной добавкой для поглощения из воды различных органических и неорганических соединений в отличие от серебра, которое проявляет в основном бактерицидные свойства.

Высокая насыпная плотность выше 850 г/дм3 обуславливает низкий уровень объема микропор и низкий суммарный объем пор, что снижает адсорбционную способность, а насыпная плотность ниже 750 г/дм3 дает увеличение объема сорбента, так как приводит к увеличению длины слоя. Относительно размера микропор было установлено, что при размере микропор ниже 1,50 нм ухудшается кинетика поглощения и возрастает длина работающего слоя, а при размере микропор более 1,60 нм снижается энергия адсорбции и падает адсорбционный потенциал. При содержании меди ниже 1,4% мас. уменьшается количество цианида натрия, поглощенного за счет хемосорбционной составляющей, а при содержании меди более 1,8% мас. происходит блокировка микропор и снижается количество поглощенного цианида натрия за счет сорбционной составляющей.

Размер зерен 0,2-1,0 мм обеспечивает хорошую внешнюю кинетику, если размер гранул более 1,0 мм - идет проскок за счет «стеночного» эффекта, если менее 0,2 мм - возрастает сопротивление слоя.

Из изложенного следует, что каждый из признаков заявленной совокупности в большей или меньшей степени влияет на достижение поставленной цели, а вся совокупность является достаточной для характеристики заявленного технического решения.

1. Способ получения сорбента для очистки питьевой воды, включающий приготовление пропиточного раствора, представляющего собой аммиачный раствор основной углекислой меди, пропитку раствором зёрен микропористого активного угля, взятого в количестве, равном 0,8-0,85 от суммарного объёма пор угля, вылёживание пропитанного угля на воздухе и термическую обработку при 120-1450С, отличающийся тем, что пропитке подвергают активный уголь с насыпной плотностью 750-850 г/дм3, с суммарным объёмом пор 0,20-0,25 см3/г, с размером микропор 1,5-1,6 нм, пропитку ведут раствором с концентрацией основной углекислой меди, равной 55-65 г/дм3, с обеспечением содержания меди в сорбенте 1,4-1,8 мас.%.

2. Способ по п.1, отличающийся тем, что размер зёрен активного угля составляет 0,2-1,0 мм.



 

Похожие патенты:

Изобретение может быть использовано при изготовлении медицинских приборов, смазочных материалов, гальванических и полированных покрытий, абразивов. Кластеры частиц алмаза, диаметр которых не превышает 1,0 мм, разделяют на отдельные частицы и (или) на кластеры меньших размеров, содержащие меньшее количество алмазных частиц, для чего сначала получают реакционную смесь перемешиванием кластеров частиц алмаза по меньшей мере с одним ненасыщенным органическим соединением, находящимся в жидком агрегатном состоянии, например, 1-ундеценом, или с раствором по меньшей мере одного ненасыщенного органического соединения по меньшей мере в одном растворителе.

Изобретение относится к способу получения композитов в мелкодисперсном состоянии, в частности композита диоксид молибдена/углерод MoO2/C, который может быть использован в качестве эффективного анодного материала литиевых источников тока.

Изобретение относится к озонаторному оборудованию и может быть использовано при производстве озонаторов для очистки питьевой и сточных вод, дезинфекции помещений, обработки семян и злаков и т.д.

Изобретение относится к области получения волокнистых композиционных материалов из препрегов на основе эпоксидных связующих и может быть использовано для изготовления изделий из композиционных материалов в приборостроении, автомобильной, авиационной, аэрокосмической, электротехнической, строительной и других отраслях промышленности.

Изобретение относится к химической промышленности и может быть использовано для изготовления композитных материалов. Углеродные нанотрубки и дисперсионную среду, представляющую собой вещество, имеющее угол смачивания по отношению к высокоупорядоченному пиролитическому графиту не более 120°, смешивают путём механической обработки до максимального размера агломератов углеродных нанотрубок не более 50 мкм.

Изобретение может быть использовано в нефтегазовой и химической промышленности. Способ повышения эффективности абсорбции абсорбционным маслом включает подачу жидкости (11) холодного испарительного барабана (12А) ко входу холодной отпарной колонны (12) для получения потока результирующего пара головного погона холодной отпарной колонны (12), обогащенного сжиженным нефтяным газом, и отдельную подачу жидкости (21) горячего испарительного барабана ко входу (22А) горячей отпарной колонны (22) для получения потока результирующего пара головного погона горячей отпарной колонны (22), обогащенного водородом.

Изобретение относится к катализатору для реакции орто-пара-превращения водорода, способу его приготовления и может найти применение в производстве жидкого криогенного пара-водорода.

Изобретение относится к материалу, включающему в себя восстановленный оксид графена, в котором степень восстановления оксида графена имеет пространственную вариацию, так что материал имеет градиент удельной электропроводности и/или диэлектрической проницаемости.

Изобретение относится к установкам для получения водорода, которые используют, в частности, в автономных энергоисточниках на топливных элементах. Автономная водородная установка включает линию подачи углеводородного сырья и реактор паровоздушного риформинга с линией вывода водородсодержащего газа, также линии ввода нагретых смесей воздуха и углеводородного сырья с водой.

Изобретение относится к способу и системе получения синтез-газа в системе риформинга на основе мембраны переноса кислорода. Способ включает этапы: (I) риформинга в присутствии тепла в реакторе риформинга объединенного сырьевого потока, содержащего углеводородсодержащий сырьевой поток и водяной пар; (II) подачи потока реформированного синтез-газа на реагентную сторону реактивно управляемого, содержащего катализатор, реактор на основе мембраны переноса кислорода; (III) взаимодействия части потока реформированного синтез-газа с кислородом, проникшим по меньшей мере через один мембранный элемент переноса кислорода; (IV) передачи некоторого количества теплоты, выделенной в результате реакции, (I) газу в содержащем катализатор реакторе на основе мембраны переноса кислорода, (II) реактору риформинга при помощи излучения, (III) обедненному кислородом потоку путем конвекции; и (V) риформинг нереформированного газообразного углеводорода.

Изобретение относится к области медицины, в частности, к технологии получения углеродных сорбентов и раскрывает способ получения углеродного сорбента, обладающего антибактериальной и антимикотической активностью.

Изобретение относится к получению сорбентов на основе термически расширенного графита, обладающих ферримагнитными свойствами. Способ получения сорбента на основе термически расширенного графита (ТРГ), модифицированного магнитной ферритной фазой, включает пропитку интеркалированных графитовых частиц водным раствором солей, содержащим соль трехвалентного железа и соль двухвалентного металла при содержании каждой из упомянутых солей в количестве от 2,5 до 25 мас.

Изобретение относится к получению сорбентов на основе термически расширенного графита, обладающих ферримагнитными свойствами. Способ получения сорбента на основе термически расширенного графита (ТРГ), модифицированного магнитной ферритной фазой, включает пропитку интеркалированных графитовых частиц водным раствором солей, содержащим соль трехвалентного железа и соль двухвалентного металла при содержании каждой из упомянутых солей в количестве от 2,5 до 25 мас.

Изобретение касается области модифицированных углеродных изделий. Предложено ферромагнитное углеродное тело, содержащее частично графитизированный активированный уголь и металлические частицы ферромагнитного металла, выбранного из группы, состоящей из железа, никеля, кобальта и/или их сплавов и их комбинаций.

Техническое решение относится к композиционным материалам для очистки жидких сред фильтрацией. Композиционный материал выполнен из двух слоев.

Изобретение относится к технологии защиты окружающей среды и может быть использовано для очистки сточных вод с использованием порошкового активированного угля. Система для очистки сточных вод с использованием порошкового активированного угля содержит устройство для добавления активированного угля, устройство для смешивания и обработки, устройство для разделения воды и активированного угля, устройство для обратной промывки, систему управления и модуль питания.

Изобретение относится к области диализа, используемого в медицине. Предложена сорбционная слоистая загрузка картриджей, используемых при регенерации или очистке диализных растворов.
Изобретение относится к медицинскому адсорбенту для перорального введения и способам его получения. Медицинский адсорбент содержит активированный уголь в виде гранул сферической формы, полученный при карбонизации и активации регенерированной целлюлозы сферической формы, и который обладает средним диаметром пор от 1,5 до 2,2 нм, удельной площадью поверхности по методу BET от 700 до 3000 м2/г, средним размером частиц от 115 до 1002 мкм, содержанием оксида на поверхности 0,05 мг-экв./г или больше, и плотностью упаковки от 0,4 до 0,8 г/мл.

Изобретение относится к активированному углеродному материалу для хранения, распределения и транспортировки природного газа или метана. Нанопористый материал получают из дробленого карбонизованного и активированного природного сырья органического происхождения путем его смешения с полимерным связующим и водой с последующим формованием в блоки.

Изобретение относится к способу формирования угольного слоя, применяемого в фильтрующей коробке для респиратора. Способ формирования конформного фильтрующего слоя включает определение внутреннего периметра впуска контейнера для образования фильтрующего слоя, предоставление заполняющей трубы, имеющей внутренний периметр первого размера, причем первый размер заполняющей трубы является меньшим, чем внутренний периметр фильтрующего слоя, и штормовое заполнение, по меньшей мере частично, фильтрующего слоя фильтрующими гранулами, причем фильтрующие гранулы пропускают через первую заполняющую трубу для формирования слоя в фильтрующем слое.

Изобретение может быть использовано в атомной, химической промышленности, теплоэнергетике и металлургии. Электролизер для синтеза окисленного графита содержит корпус 1, разделенный на анодную и катодную секции, разделённые фторопластовой решеткой 7. Катод 8 представляет собой устройство в виде подвижной металлической ленты 9, частично погруженной в электролит 15. В анодную секцию добавлены титановые шарики 5 для обеспечения возможности поджима графита к токоотводу 4 анода, выполненному в виде стальной пластины и снабженному виброустановкой 3 для обеспечения возможности лучшего продвижения графита с титановыми шариками 5. Электролит 15 содержит азотную кислоту и представляет собой водный раствор, приготовленный из отходов гальванических производств, содержащий нитрат-ионы, с концентрацией азотной кислоты 20-36%, и катионы металлов - Cu2+ - 16,060 г/л; Fe2+ - 0,067 г/л; Ni2+ - 0,057 г/л; Zn2+ - 0,010 г/л. Применяют гальваностатический режим и ведут электрохимическую обработку при плотностях тока 100-600 мА/г и потенциале 1,4-4,4 В с сообщением графиту количества электричества 200 мА·ч/г. Изобретение позволяет одновременно с получением терморасширяющихся соединений графита в анодной секции электроосаждать на катоде чистые металлы в виде осадка, который собирают в ёмкости 13. Снижаются затраты на получение терморасширяющихся соединений графита за счет использования электролитов на основе отходов гальванических производств, улучшается экология за счёт утилизации гальванических отходов. 2 н.п. ф-лы, 1 ил.
Наверх