Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к области металлургии, в частности к сплавам на основе никеля, и может быть использовано для изготовления деталей горячего тракта газотурбинных двигателей и установок, длительно работающих при температурах до 1000°C. Жаропрочный литейный сплав на основе никеля содержит, мас.%: углерод до 0,15, хром 12-15, кобальт 3-7, вольфрам 5-9, молибден 0,5-2, алюминий 2-5, титан 3-6, лантан до 0,20, иттрий до 0,20, церий до 0,20, празеодим до 0,20, рений до 0,20, гафний до 0,10, барий до 0,10, кальций до 0,10, магний до 0,10, бор до 0,02, цирконий до 0,10, никель остальное. Сплав характеризуется высокими характеристиками длительной прочности при рабочих температурах до 1000°C и сопротивления сплава коррозионному воздействию в агрессивных средах, а также высокой фазово-структурной стабильностью при длительном режиме работы (более 500 часов). 2 н.п. ф-лы, 2 табл., 5 пр.

 

Изобретение относится к области металлургии, в частности к коррозионностойким жаропрочным сплавам для деталей горячего тракта газотурбинных двигателей и установок, длительно работающих в агрессивных средах при температурах 750-1000°C.

Известен жаропрочный сплав на основе никеля следующего химического состава, мас.%:

углерод 0,08-0,11
хром 14,6-15,1
кобальт 8,5-8,9
вольфрам 6,5-6,9
молибден 0,3-0,6
алюминий 3,9-4,1
титан 3,6-3,8
бор 0,01-0,013
кальций 0,01-0,20
кремни ≤0,1
марганец 0,15-0,30
сера ≤0,005
фосфор ≤0,005
магний 0,01-0,20
медь ≤0,05
азот 10-20 ppm
кислород 10-15 ppm,

по меньшей мере два элемента, выбранных из группы:

железо ≤0,2
ванадий ≤0,10
барий ≤0,01
никель остальное

(RU 2538054 С1, 10.01.2015).

Сплав имеет невысокие характеристики длительной и кратковременной прочности, повышенную пористость в отливках и пониженную коррозионную стойкость.

Известен жаропрочный сплав на основе никеля следующего химического состава, мас.%:

углерод 0,05-0,09
хром 15,4-15,8
кобальт 10,0-10,4
вольфрам 5,0-5,3
молибден 1,6-1,8
титан 4,3-4,5
алюминий 3,0-3,2
бор 0,06-0,09
цирконий <0,015
гафний 0,2-0,3
кремний <0,1
железо <0,1
медь <0,05
сера <0,005
азот <20 ppm
кислород <15 ppm
церий <0,015
ниобий 0,1-0,2
иттрий <0,03
марганец <0,1
фосфор <0,005
никель остальное

(RU 2539643 С1, 20.01.2015).

Сплав имеет достаточно высокие прочностные и пластические характеристики, но отличается пониженной структурной стабильностью при длительной работе, связанной с выпадением охрупчивающей σ-фазы, которая существенно понижает жаропрочные свойства сплава и ограничивает ресурс работы двигателя.

Наиболее близким аналогом, взятым за прототип, является жаропрочный сплав на основе никеля для литья рабочих лопаток газотурбинных установок, содержащий, мас.%:

углерод 0,07-0,12
хром 12,9-13,5
кобальт 5,3-5,9
вольфрам 6,7-7,3
молибден 0,8-1,2
алюминий 3,2-3,5
титан 4,4-4,7
бор 0,010-0,015
медь ≤0,04
сера ≤0,005
фосфор ≤0,005
азот ≤15 ppm
кислород ≤15 ppm
кальций ≤0,02
магний ≤0,02
марганец 0,01-0,30,

по меньше мере два элемента, выбранных из группы:

железо, кремний, ≤0,2 каждого,
барий

по меньше мере два элемента, выбранных из группы:

иттрий, лантан,
неодим и самарий 0,005-0,05 каждого

никель остальное

(RU 2562202 С1, 10.09.2015).

Сплав, взятый за прототип, имеет удовлетворительную коррозионную стойкость в агрессивных средах при рабочих температурах 750-1000°C и достаточно высокие характеристики кратковременной прочности и пластичности, однако он имеет невысокие характеристики длительной прочности при испытаниях на базе 500-1000 часов, а также невысокую технологичность (выход годного) при отливке деталей.

Таким образом, известные сплавы при рабочих температурах 750-1000°C не обладают оптимальным сочетанием служебных свойств (жаропрочность, пластичность, сопротивление высокотемпературной коррозии, структурно-фазовая стабильность в процессе эксплуатации), а также высокой технологичностью при отливке деталей.

Задачей предложенного изобретения является разработка жаропрочного литейного сплава на основе никеля с оптимизированным сочетанием служебных свойств и высокой технологичностью.

Техническим результатом предлагаемого изобретения является повышение характеристик длительной прочности при рабочих температурах до 1000°C в сочетании с высоким сопротивлением сплава коррозионному воздействию в агрессивных средах, а также повышенная фазово-структурная стабильность сплава при длительном режиме работы (более 500 часов).

Для достижения технического результата предложен жаропрочный литейный сплав на основе никеля, содержащий углерод, хром, кобальт, вольфрам, молибден, алюминий, титан, лантан, иттрий, барий, кальций, магний, бор, при этом он дополнительно содержит церий, празеодим, рений, гафний и цирконий при следующем соотношении компонентов, мас.%:

углерод до 0,15
хром 12-15
кобальт 3-7
вольфрам 5-9
молибден 0,5-2
алюминий 2-5
титан 3-6
лантан до 0,20
иттрий до 0,20
церий до 0,20
празеодим до 0,20
рений до 0,20
гафний до 0,10
барий до 0,10
кальций до 0,10
магний до 0,10
бор до 0,02
цирконий до 0,10

никель остальное

Также предложено изделие, выполненное из данного сплава.

По сравнению со сплавом-прототипом в предлагаемом сплаве содержатся небольшие строго регламентированные количества церия, празеодима, рения, гафния и циркония.

Было установлено, что комплексное введение в сплав, содержащий лантан и иттрий, церия и празеодима позволило дополнительно повысить коррозионную стойкость и эксплуатационную надежность сплава при температурах 750-1000°C за счет создания на поверхности металла надежного защитного барьерного слоя.

Комплексное легирование сплава лантаном, иттрием, церием и празеодимом позволило также повысить характеристики длительной прочности сплава за счет дополнительного упрочнения γ-твердого раствора ультрадисперсными наночастицами размером до 100 нм.

Рений дополнительно упрочняет γ-твердый раствор, замедляет диффузионные процессы при высокотемпературной ползучести и тем самым способствует повышению жаропрочности. Кроме того, рений совместно с лантаном, иттрием, церием и празеодимом позволяет повысить структурную стабильность сплава в процессе эксплуатации и исключить образования в структуре охрупчивающих фаз типа σ и μ.

Введение гафния и циркония позволяет нейтрализовать вредное влияние примесей серы, фосфора, кислорода и других за счет их связывания в тугоплавкие, химически стойкие соединения. Кроме того, гафний и цирконий входят в состав γ'-фазы и дополнительно ее стабилизируют, тем самым обеспечивая повышение длительной прочности.

Предлагаемый сплав может быть использован для получения деталей как с равноосной, так с направленной и монокристаллической структурой.

Примеры осуществления.

В вакуумной индукционной печи было выплавлено пять сплавов предлагаемого состава и один сплав состава, взятого за прототип. Полученные заготовки были переплавлены в установке направленной кристаллизации и отлиты керамические блоки с заготовками под образцы с монокристаллической структурой с кристаллографической ориентацией.

Из заготовок после проведения термической обработки были изготовлены образцы для проведения испытаний на длительную прочность, а также образцы для испытаний на сульфидно-оксидную и хлоридную коррозию.

Испытания на длительную прочность проводили при температуре 870°C и напряжениях 360 и 275 МПа на базе соответственно 100 и 1000 часов, при температуре 900°C и напряжении 295 МПа на базе 500 часов, а также при температуре 1000°C и напряжении 120 МПа на базе 500 часов.

Испытания на коррозию проводили по циклическому режиму. Один цикл испытаний включал:

- создание на горячей поверхности образцов солевой корки водного раствора смеси солей 75% Na2SO4+25% NaCl (для сульфидно-оксидной коррозии) или 3,5% водного раствора NaCl (для хлоридной коррозии);

- выдержка образцов при Т=850°C в течение 1 часа в нагревательной печи;

- охлаждение на воздухе.

Общая продолжительность испытаний - 30 циклов.

Оценку стойкости образцов к коррозии проводили по удельному изменению (убыли) массы путем взвешивания образцов через каждые 5 циклов.

Содержание компонентов (мас. %) в сплавах и результаты испытаний на длительную прочность и коррозию приведены в таблицах 1 и 2 соответственно.

Полученные результаты испытаний свидетельствуют, что долговечность предлагаемого сплава при испытаниях на длительную прочность при всех режимах заметно превосходит долговечность сплава-прототипа, т.е. предлагаемый сплав обладает более высоким уровнем жаропрочности.

Предлагаемый сплав обладает высокой коррозионной стойкостью при температуре испытаний 850°C в сравнении со сплавом-прототипом: удельное изменение (убыль) массы образцов как при сульфидно-оксидной, так и при хлоридной коррозии практически в 2 раза меньше, чем у сплава-прототипа.

Проведенный металлографический анализ структуры разрушенных образцов после испытаний на длительную прочность на базе 500-1000 часов не выявил в ней охрупчивающих ТПУ-фаз (σ, μ и др.), что свидетельствует о высокой фазовой и структурной стабильности предлагаемого сплава.

При отливке монокристаллических лопаток турбины из предлагаемого сплава была подтверждена его хорошая технологичность - выход годного лопаток по отклонениям от КГО составил 85-90%.

Таким образом, предлагаемый сплав существенно превосходит сплав-прототип по долговечности и коррозионной стойкости, обладает высокой фазово-структурной стабильностью, что позволяет повысить ресурс работы и надежность деталей газотурбинных двигателей и установок, которые длительно эксплуатируются в агрессивных средах при повышенных температурах и напряжениях.

1. Жаропрочный литейный сплав на основе никеля, содержащий углерод, хром, кобальт, вольфрам, молибден, алюминий, титан, лантан, иттрий, барий, кальций, магний и бор, отличающийся тем, что он дополнительно содержит церий, празеодим, рений, гафний и цирконий при следующем соотношении компонентов, мас.%:

углерод до 0,15
хром 12-15
кобальт 3-7
вольфрам 5-9
молибден 0,5-2
алюминий 2-5
титан 3-6

лантан до 0,20
иттрий до 0,20

церий до 0,20
празеодим до 0,20
рений до 0,20
гафний до 0,10
барий до 0,10
кальций до 0,10
магний до 0,10
бор до 0,02
цирконий до 0,10

никель остальное

2. Изделие из жаропрочного литейного сплава на основе никеля, отличающееся тем, что оно выполнено из сплава по п. 1.



 

Похожие патенты:

Изобретение относится к металлургии, в частности к коррозионно-стойким жаропрочным сплавам на основе никеля, и может быть использовано для изготовления деталей газотурбинных двигателей и установок, длительно работающих в агрессивных средах при температурах до 700°С.

Изобретение относится к металлургии, в частности к коррозионно-стойким жаропрочным сплавам на основе никеля, и может быть использовано для изготовления деталей газотурбинных двигателей и установок, длительно работающих в агрессивных средах при температурах до 700°С.

Сплав // 2652920
Изобретение относится к области металлургии, в частности к составам сплавов, используемых для изготовления деталей тепловых агрегатов, металлургического оборудования.

Изобретение относится к области металлургии, в частности к легкообрабатываемым, высокопрочным сплавам, которые могут быть использованы для изготовления деталей газотурбинных двигателей.

Изобретение относится к металлургии, а именно к материалам электрода свечи зажигания. Материал электрода свечи зажигания представляет собой сплав на основе никеля, содержащий кремний в количестве от 0,7 до 1,3 мас.

Изобретение относится к области металлургии, а именно никель-кобальтовым сплавам. Ni-Co сплав содержит, вес.

Изобретение относится к области металлургии, а именно к предсварочной термообработке компонента турбины. Способ предварительной термообработки перед сваркой компонента турбины из никелевого сплава Inconel 939 включает нагрев компонента турбины до первой температуры в диапазоне от температуры на 35°F (19,4°C) ниже температуры растворения фазы γ' и до температуры начала плавления сплава и выдержку при этой температуре, охлаждение со скоростью 1°F (0,56°C) в минуту до температуры 1900°F(±25°F) (1038±15°C) и выдержку при этой температуре, охлаждение со скоростью 1°F в минуту до температуры 1800°F(±25°F) (982±15°C) и выдержку при этой температуре.

Изобретение относится к получению наноструктурированного порошка твердого раствора никель-кобальт. Способ включает взаимодействие кристаллических малорастворимых карбонатов никеля и кобальта с восстановителем в виде водного раствора гидразингидрата в концентрации 9,6 мас.%.

Изобретение относится к металлургии, в частности к литейным жаропрочным коррозионностойким сплавам на основе никеля, и может быть использовано для изготовления сопловых лопаток с равноосной структурой горячего тракта газотурбинных установок.

Изобретение относится к области металлургии, а именно к производству изделий из литейных жаропрочных сплавов на никелевой основе, и может быть использовано при изготовлении деталей газотурбинных двигателей, в особенности полых тонкостенных лопаток турбины.

Изобретение относится к металлургии, в частности к коррозионно-стойким жаропрочным сплавам на основе никеля, и может быть использовано для изготовления деталей газотурбинных двигателей и установок, длительно работающих в агрессивных средах при температурах до 700°С.

Изобретение относится к металлургии, в частности к коррозионно-стойким жаропрочным сплавам на основе никеля, и может быть использовано для изготовления деталей газотурбинных двигателей и установок, длительно работающих в агрессивных средах при температурах до 700°С.

Изобретение относится к металлургии, в частности к коррозионно-стойким жаропрочным сплавам на основе никеля, и может быть использовано для изготовления деталей газотурбинных двигателей и установок, длительно работающих в агрессивных средах при температурах до 700°С.

Изобретение относится к металлургии, в частности к коррозионно-стойким жаропрочным сплавам на основе никеля, и может быть использовано для изготовления деталей газотурбинных двигателей и установок, длительно работающих в агрессивных средах при температурах до 700°С.

Изобретение относится к области черной металлургии, в частности к составам сплавов, которые могут быть использованы в химической промышленности, судостроении. Коррозионностойкий сплав содержит, мас.%: углерод 0,1-0,3; кремний 0,1-0,3; хром 14,5-15,5; титан 0,005-0,03; железо 7,0-10,0; ниобий 0,1-0,2; медь 0,25-0,35; алюминий 0,4-0,6; кальций 0,001-0,0015; бор 0,08-0,12; тантал 0,3-0,8; цирконий 1,5-2,5; никель - остальное.

Сплав // 2652920
Изобретение относится к области металлургии, в частности к составам сплавов, используемых для изготовления деталей тепловых агрегатов, металлургического оборудования.

Сплав // 2652920
Изобретение относится к области металлургии, в частности к составам сплавов, используемых для изготовления деталей тепловых агрегатов, металлургического оборудования.

Изобретение относится к области металлургии, в частности к легкообрабатываемым, высокопрочным сплавам, которые могут быть использованы для изготовления деталей газотурбинных двигателей.

Изобретение относится к области металлургии, в частности к легкообрабатываемым, высокопрочным сплавам, которые могут быть использованы для изготовления деталей газотурбинных двигателей.

Изобретение относится к области металлургии, а именно никель-кобальтовым сплавам. Ni-Co сплав содержит, вес.
Наверх