Способ и катализатор для одновременного удаления монооксида углерода и оксидов азота из дымовых или выхлопных газов

Изобретение относится к способу и катализатору для одновременного удаления монооксида углерода и оксидов азота, содержащихся в дымовых или выхлопных газах. Способ включает введение аммиака и/или его предшественника в дымовые или выхлопные газы, конверсию предшественника, если таковой используется, в аммиак, и контактирование газа и аммиака при температуре до 350°С со слоистым катализатором, содержащим в направлении потока газа верхний первый слой катализатора с окислительным катализатором, состоящим из палладия, оксида ванадия и оксида титана, и нижележащий второй слой катализатора с катализатором NH3-СКВ, который поддерживает полностью первый слой, и окисляющим монооксид углерода и летучие органические соединения в верхнем первом слое, не влияя на аммиак, который дополнительно содержится в газе, и восстанавливающий количество оксидов азота в нижележащем втором слое катализатора посредством реакции с аммиаком. Изобретение обеспечивает эффективное удаление монооксида углерода и оксидов азота из дымовых или выхлопных газов. 2 н. и 9 з.п. ф-лы, 1 ил., 1 табл., 1 пр.

 

Настоящее изобретение относится к способу и катализатору для одновременного удаления монооксида углерода и оксидов азота (NOx), содержащихся в дымовых или выхлопных газах.

Более конкретно изобретение относится к способу, в котором дымовой газ или выхлопной газ, содержащий вредный монооксид углерода, летучие органические соединения (ЛОС) и NOx контактирует со слоистым катализатором, в котором первый слой содержит окислительный катализатор, а нижележащий слой содержит катализатор CКB-NH3 для одновременного удаления монооксида углерода и NOx.

Удаление NOx, летучих органических соединений (ЛОС) и СО из дымовых или выхлопных газов традиционно осуществляется с использованием двух различных каталитических составов и отличается тем, что окислительный катализатор расположен выше над катализатором селективного каталитического восстановления (СКВ), а впрыск восстановителя осуществляется между катализаторами. Удаление оксидов азота (NOx) обычно осуществляют посредством селективного каталитического восстановления (СКВ) аммиаком (NH3) с помощью катализаторов на основе оксида ванадия или цеолита в монолитной форме. Аммиак впрыскивают выше по потоку перед катализатором СКВ и он вступает в реакцию с NOx на поверхности катализатора. Оптимальный температурный диапазон для катализаторов на основе оксида ванадия составляет 200-400°C, тогда как катализаторы на основе цеолита являются более активными при температурах >400°C.

В случае удаления СО и ЛОС посредством каталитического окисления металлы платиновой группы являются наиболее распространенным выбором вследствие их высокой реакционной способности уже при температурах >200°C.

В качестве примера дымовой газ, содержащий как СО, ЛОС, так и NOx, представляет собой дымовой газ из турбины, работающей на природном газе. Традиционно в проектах котлов-утилизаторов катализатор окисления СО часто на основе платины (Pt) располагают выше по потоку перед катализатором СКВ и сеткой впрыска аммиака (СВА). Данное расположение было выбрано в основном с учетом того факта, что окислительный катализатор является очень активным при реакции окисления NH3 в NOx, что является очень нежелательным. В компоновке с размещением катализатора окисления СО выше по потоку СВА гарантирует, что NH3 не будет расходоваться впустую, а все количество введенного аммиака достигнет катализатора СКВ, тем самым снижая эксплуатационные затраты установки.

В альтернативной конфигурации окислительный катализатор размещают ниже по потоку после катализатора СКВ. При размещении в таком положении окислительный катализатор функционирует при более низких температурах, чем при традиционной компоновке. Проблема данной конфигурации заключается в том, что при неправильном проектировании окислительный катализатор может окислять проскок аммиака (NH3) в NOx, тем самым снижая общий уровень удаления оксидов азота, выделяемых установкой. Возможно окислительный катализатор может быть спроектирован таким образом, что вместо этого NH3 конвертируется в N2, но такой катализатор, как правило, дороже, чем обычный окислительный катализатор как за счет вида, так и количества благородных металлов, используемых для его производства.

В приведенных выше конфигурациях получаемый реактор состоит из двух отдельных блоков катализатора, то есть одного блока катализатора СКВ и одного блока окислительного катализатора. Точнее, общий объем установленных катализаторов будет определяться размером блока катализатора СКВ, плюс размер блока окислительного катализатора.

Для того чтобы уменьшить размер реактора, была сделана попытка комбинирования двух катализаторов, частично на одной подложке, и в некоторых случаях такое решение было реализовано.

Патент США 7.390.471 описывает устройство очистки выхлопных газов для снижения концентрации NOx НС и СО в потоке выхлопных газов. Устройство очистки включает в себя многофункциональный каталитический элемент, состоящий из расположенной выше по потоку только восстановительной части и расположенной ниже по потоку восстановительно-окислительной части, которая расположена ниже по потоку после устройства впрыска аммиака. Селективное каталитическое восстановление (СКВ) NOx активизируется в расположенной выше по потоку части каталитического элемента посредством впрыска аммиака сверх стехиометрической концентрации с получением проскока аммиака, который окисляется в расположенной ниже по потоку части каталитического элемента. Любой дополнительный NOx, который генерируется вследствие окисления аммиака, дополнительно снижается в расположенной ниже по потоку части перед его выбросом в атмосферу. Только восстановительный катализатор может представлять собой катализатор на основе ванадия/диоксида титана (TiO2), а восстановительно-окислительный катализатор включает в себя восстановительный катализатор, содержащий 1,7 вес.% ванадия/TiO2, пропитанный 2,8 г/фт3 по отдельности платины и палладия.

Тем не менее активность СКВ окислительного катализатора значительно ниже, чем активность СКВ катализатора только СКВ, а это означает, что общий объем установленного катализатора будет равен объему окислительного катализатора плюс объем катализатора СКВ, необходимого, чтобы компенсировать низкую активность СКВ окислительного катализатора.

При очистке дымовых газов газовых турбин, в качестве примера главным приоритетом с точки зрения энергокомпании является максимально возможное снижение общего объема катализатора. Большие объемы, по сути, означают высокий перепад давления в слое катализатора и более низкий общий КПД котлов-утилизаторов. Перепад давления оказывает прямое влияние на отбираемую (чистую) мощность, достижимую на турбине, и косвенное влияние на удельный тепловой поток, т.е. тепловую мощность, которая может отбираться из дымового газа посредством котла-утилизатора.

Чтобы уменьшить объем катализатора до минимума, активность СКВ окислительного катализатора должна быть увеличена до таких же высоких уровней, что и у катализатора только СКВ. Одним из важных условий для обеспечения этого является использование окислительного катализатора, который проявляет высокую активность в окислении СО и ЛОС, но не вступает в реакцию с NH3. Другое важное условие заключается в том, что окислительный катализатор по-прежнему должен иметь такую же окислительную активность, что и у только окислительного катализатора.

Согласно настоящему изобретению эти два условия достигнуты, общий объем полученного катализатора для комбинированного удаления как СО, ЛОС, так и NOx, является равным объему наибольшего катализатора между специально выделенным окислительным катализатором и специально выделенным катализатором СКВ, которые зависят от требуемого удаления СО, ЛОС и NOx для конкретной установки.

Таким образом, настоящее изобретение обеспечивает способ снижения количества монооксида углерода, летучих органических соединений и оксидов азота в дымовых или выхлопных газах, при этом указанный способ включает в себя следующие стадии:

введение аммиака и/или его предшественника в дымовые или выхлопные газы;

конверсию предшественника, если таковой используется, в аммиак;

контактирование газа и аммиака при температуре до 350°C со слоистым катализатором, содержащим в направлении потока газа верхний первый слой катализатора с окислительным катализатором и нижележащий второй слой катализатора с катализатором CКB-NH3, который поддерживает полностью первый слой, и окисляющим по меньшей мере часть количества монооксида углерода и летучих органических соединений в верхнем первом слое, не влияя на аммиак, который дополнительно содержится в газе, и восстанавливающий количество оксидов азота в нижележащем втором слое катализатора посредством реакции с аммиаком.

Был разработан катализатор окисления СО, ЛОС, который является неактивным при реакции окисления NH3 при температурах до 350°C для использования в способе согласно изобретению.

Таким образом, в одном варианте осуществления изобретения окислительный катализатор в первом слое состоит из палладия, оксида ванадия и оксида титана.

Посредством покрытия данного катализатора на коммерчески доступном катализаторе CКB-NH3, например катализаторе CКB-NH3, содержащем оксиды вольфрама, молибдена, ванадия и титана, согласно другому варианту осуществления настоящего изобретения полученный катализатор состоит из первого слоя, окисляющего СО и ЛОС, но не аммиак, и второго слоя катализатора - только CКB-NH3.

Ссылаясь на Фигуру 1, на чертежах при температурах газа до 350°C, СО и ЛОС будут окисляться до СО2 в первом окислительном слое 2 слоистого катализатора 1, тогда как весь впрыскиваемый NH3 для снижения NOx будет одновременно диффундировать через окислительный слой 2 и вступать в реакцию на нижележащем слое катализатора СКВ 3.

Посредством увеличения пористой структуры и толщины первого слоя катализатора как NOx, так и NH3 легко достигнут нижележащего катализатора СКВ и лишь незначительная активность СКВ будет потеряна из-за скорости диффузии реагентов в слое окислительного катализатора.

Таким образом, в другом варианте осуществления изобретения первый слой катализатора имеет толщину слоя от 10 до 200 микрон, предпочтительно от 10 до 50 микрон.

В способе согласно изобретению, как описано выше, дымовые или выхлопные газы дополнительно могут обрабатываться с помощью обычного неслоистого катализатора СКВ выше или ниже по потоку слоистого катализатора.

Изобретение обеспечивает дополнительно катализатор для одновременного окисления монооксида углерода и летучих органических соединений и селективного восстановления оксидов азота посредством реакции с аммиаком, при этом катализатор содержит первый слой окислительного катализатора и второй слой катализатора CКB-NH3, поддерживающий полностью первый слой.

Предпочтительно окислительный катализатор состоит из палладия, оксидов ванадия и оксидов титана.

Предпочтительный окислительный катализатор согласно одному варианту осуществления изобретения также имеет определенную активность СКВ вследствие присутствия как TiO2, так и оксидов ванадия. Полная активность СКВ, таким образом, сохраняется без необходимости увеличения добавления аммиака. Таким образом, требуемое удаление как СО, так и NOx может быть достигнуто со значительно уменьшенным объемом катализатора.

В одном варианте осуществления изобретения первый слой катализатора имеет толщину слоя от 10 до 200 микрон, предпочтительно от 10 и 50 микрон.

При структурировании слоистого катализатора в монолитном исполнении полученный монолитный катализатор имеет однородный каталитический состав по всей длине монолита. Удаление СО, ЛОС и NOx происходит одновременно по всей длине монолита.

Пример

Коммерчески доступный катализатора СКВ на основе V/Ti был покрыт катализатором, состоящим из 0,45 вес.% Pd, 4,5 вес.% V2O5 на TiO2. Эффективность удаления NOx измерили и сравнили с эффективностью удаления NOx такого же катализатора СКВ, но который не был покрыт окислительным катализатором. Результаты и условия теста приведены в Таблице 1 ниже:

Условия испытаний

Состав газа на входе: 50 частей на миллион по объему (ч.н.м. / об) NOx, 55 ч.н.м. об. NH3, 100 ч.н.м. об. СО, 15% об. O2, 10% об. H2O, баланс N2.

Объемная скорость газа, NHSV=27000 ч-1. Температура: 350°C.

Как видно из Таблицы 1, одинаковая (в пределах экспериментальной погрешности) эффективность удаления оксидов азота была получена в обоих тестах.

1. Способ снижения количества монооксида углерода, летучих органических соединений и оксидов азота в дымовых или выхлопных газах, который включает в себя следующие стадии:

введение аммиака и/или его предшественника в дымовые или выхлопные газы;

конверсию предшественника, если таковой используется, в аммиак;

контактирование газа и аммиака при температуре до 350°С со слоистым катализатором, содержащим в направлении потока газа верхний первый слой катализатора с окислительным катализатором, состоящим из палладия, оксида ванадия и оксида титана, и нижележащий второй слой катализатора с катализатором NH3-СКВ, который поддерживает полностью первый слой, и окисляющим по меньшей мере часть количества монооксида углерода и летучих органических соединений в верхнем первом слое, не влияя на аммиак, который дополнительно содержится в газе, и восстанавливающий количество оксидов азота в нижележащем втором слое катализатора посредством реакции с аммиаком.

2. Способ по п. 1, отличающийся тем, что окислительный катализатор состоит из 0,45 вес. % палладия, 4,5 вес.% пентоксида ванадия и нанесен на подложку из оксида титана.

3. Способ по п. 1, отличающийся тем, что первый слой катализатора имеет толщину слоя от 10 до 200 микрон.

4. Способ по п. 1, отличающийся тем, что первый слой катализатора имеет толщину слоя от 10 до 50 микрон.

5. Способ по п. 1, отличающийся тем, что катализатор СКВ-NH3 во втором слое катализатора содержит оксиды вольфрама, молибдена, ванадия и титана.

6. Способ по любому из пп. 1-5, отличающийся тем, что дымовые или выхлопные газы дополнительно обрабатываются с помощью обычного неслоистого катализатора СКВ либо выше, либо ниже по потоку слоистого катализатора.

7. Катализатор для одновременного окисления монооксида углерода и летучих органических соединений и селективного восстановления оксидов азота посредством реакции с аммиаком, при этом катализатор содержит первый слой окислительного катализатора, состоящего из палладия, оксидов ванадия и оксидов титана, и ниже по потоку второй слой катализатора СКВ-NH3, полностью поддерживающий первый слой.

8. Катализатор по п. 7, отличающийся тем, что окислительный катализатор состоит из 0,45 вес.% палладия, 4,5 вес.% пентоксида ванадия и нанесен на подложку из оксида титана.

9. Катализатор по п. 7, отличающийся тем, что первый слой катализатора имеет толщину слоя от 10 до 200 микрон.

10. Катализатор по п. 7, отличающийся тем, что первый слой катализатора имеет толщину слоя от 10 до 50 микрон.

11. Катализатор по любому из пп. 7-10, отличающийся тем, что катализатор СКВ-NH3 во втором слое катализатора содержит оксиды вольфрама, молибдена, ванадия и титана.



 

Похожие патенты:

Изобретение относится к области очистки отработанных газов двигателя внутреннего сгорания. При определения степени старения окислительного каталитического нейтрализатора (4) выхлопных газов, расположенного в выпускном тракте (2) двигателя (3) внутреннего сгорания определяют температуру подложки окислительного каталитического нейтрализатора (4) выхлопных газов.

Изобретение относится к каталитическому фильтру, предназначенному для отфильтровывания твердых частиц из отработавшего газа, выпускаемого из двигателя внутреннего сгорания с принудительным воспламенением топлива, а также системе выпуска отработавших газов, содержащей такой фильтр, и способу одновременной конверсии оксидов азота и твердых частиц.
Изобретение относится к выхлопной системе, предназначенной для обработки выхлопного газа двигателя внутреннего сгорания. Выхлопная система включает тройной катализатор (TWC – three-way catalyst), катализатор реформинга топлива, расположенный по потоку после TWC, и устройство подачи топлива, расположенное по потоку до катализатора реформинга топлива, при этом первую часть выхлопного газа направляют в обход TWC и приводят в контакт с катализатором реформинга топлива в присутствии топлива, добавляемого из устройства подачи топлива, с образованием потока газообразных продуктов реформинга, а вторую часть выхлопного газа приводят в контакт с TWC и используют для нагревания катализатора реформинга топлива, после чего сбрасывают в атмосферу, и при этом поток газообразных продуктов реформинга рециркулируют в систему впуска двигателя.

Изобретение относится к катализатору гидролиза для восстановления оксидов азота, выполненному в форме каталитического покрытия. В качестве соединения, адсорбирующего HNCO и оксиды азота, указанный катализатор гидролиза содержит лантан и дополнительно содержит одно из следующих: щелочноземельный металл, иттрий, празеодим, галлий, цирконий, причем каталитическое покрытие из указанного катализатора гидролиза представляет собой покрытие на основе диоксида титана, на основе SiO2, на основе цеолита, и/или на основе двуокиси циркония.

Изобретение может быть использовано в двигателях внутреннего сгорания. Способ эксплуатации двигателя заключается в том, что изменяют количество газов системы рециркуляции выхлопных газов (EGR), подаваемых в двигатель (10) с помощью канала (76) системы EGR высокого давления и канала (81) системы EGR низкого давления, в зависимости от концентрации NOx в выпускном канале ниже по потоку от каталитического нейтрализатора (70) системы селективного каталитического восстановления (SCR).

Изобретение может быть использовано в устройствах управления двигателей внутреннего сгорания. Устройство управления для двигателя внутреннего сгорания включает в себя устройство управления выхлопными газами в выпускной системе двигателя внутреннего сгорания.

Группа изобретений относится к машиностроению, а именно к устройствам и способам управления с обратной связью соотношением воздух-топливо в двигателях внутреннего сгорания.

Изобретение раскрывает катализатор для очистки выхлопного газа, включающий благородный металл; оксид, включающий в качестве основного материала А алюминий и цирконий, где оксид циркония составляет от 0,1 до 20% масс., если общая масса основного материала А в пересчете на массу оксида составляет 100% масс.
Изобретение относится к ловушке NOx для выхлопных систем двигателей внутреннего сгорания и способу обработки выхлопных газов из двигателей внутреннего сгорания. Ловушка NOx включает подложку, первый слой, содержащий первый металл платиновой группы, первый компонент аккумулирования NOx и первый носитель, второй слой, содержащий второй металл платиновой группы, второй компонент аккумулирования NOx и второй носитель, и третий слой, содержащий родий и третий носитель, где первый слой характеризуется уровнем введения металла платиновой группы, который находится в диапазоне от 1 до 40 процентов от уровня введения металла платиновой группы во второй слой, при этом первый компонент аккумулирования NOx и второй компонент аккумулирования NOx являются идентичными, и идентичными являются первый носитель и второй носитель.

Изобретение относится к области очистки отработавших газов двигателя внутреннего сгорания. Способ очистки, при котором восстановление оксида азота происходит вследствие того, что в поток отработанного газа до катализатора, который заполнен материалом катализатора для селективного каталитического восстановления оксида азота, добавляют выделяющий аммиак восстановитель, отличающийся тем, что отношение количества NH3 к NOx (коэффициент загрузки α) периодически варьируется с помощью изменения выхода необработанных оксидов азота из двигателя внутреннего сгорания таким образом, что коэффициент загрузки α периодически колеблется около заданного значения.

Изобретение относится к выхлопной системе для двигателя компрессионного воспламенения, содержащей каталитический фильтр сажи. Указанный каталитический фильтр сажи содержит катализатор окисления для обработки монооксида углерода (CO) и углеводородов (HC) в выхлопном газе из двигателя компрессионного воспламенения, при этом указанный катализатор окисления размещен на фильтрующей подложке, которая представляет собой фильтр с проточными стенками.

Изобретение относится к катализатору (10) для окисления компонентов выхлопных газов, в частности с содержанием оксида азота, предпочтительно моноксида азота. Катализатор (10) содержит покрытую частицами платины (20) зернистую подложку (30) из титансодержащих наночастиц, причем множество частиц платины (20) и/или титансодержащих наночастиц (30) соединено между собой расположенными между этими частицами содержащими оксиды металлов мостиками (40).

Изобретение относится к области органической химии, а именно к разработке высокоэффективных методов синтеза полициклического нитрамина 2,4,6,8,10,12-гексанитро-2,4,6,8,10,12-гексаазатетрацикло [5,5,0,03,11,05,9]додекана (гексанитрогексаазаизовюрцитан, ГАВ, CL-20).

Изобретение относится к получению ненасыщенных углеводородов, к катализатору селективного гидрирования и к способам его получения и применения. Описана композиция, содержащая экструдированную неорганическую подложку, содержащую оксид металла или металлоида, и по меньшей мере один каталитически активный металл группы 10.

Изобретение относится к катализатору окисления горючих газов. Катализатор содержит наночастицы соединений благородных металлов, таких как платина, палладий и иридий, с мольным соотношением элементов (Pt+Pd):Ir, равным 1:x, где x изменяется в диапазоне от 0,02 до 0,67, нанесенных на пористый носитель с удельной площадью поверхности пор от 50 до 500 м2/г.

Изобретение относится к катализаторам для очистки газовых смесей от токсичных примесей, в частности от оксидов азота и углерода, и может быть использовано для удаления их из газовых технологических выбросов и выхлопных газов двигателей внутреннего сгорания.
Изобретение относится к способам получения катализаторов и предназначено для получения полимерсодержащего катализатора реакции Сузуки на основе наночастиц палладия, импрегнированных в матрицу сверхсшитого полистирола методом пропитки по влагоемкости (импрегнации).

Изобретение относится к катализатору окисления для окислительной обработки углеводородов (НС) и монооксида углерода (СО) в выхлопных газах, в котором данный катализатор окисления содержит поддерживающую основу и слои катализатора, закрепленные на поддерживающей основе, где каждый слой катализатора включает материал покрытия из пористого оксида, активный металл и адсорбент углеводородов, и где второй слой катализатора расположен на стороне поверхностного слоя катализатора и первый слой катализатора расположен на стороне ниже второго слоя катализатора; и где: a) количество адсорбента углеводородов во втором слое катализатора больше, чем количество адсорбента углеводородов в первом слое катализатора, и концентрация активного металла во втором слое катализатора является такой же или меньше, чем концентрация активного металла в первом слое катализатора; или (b) количество адсорбента углеводородов во втором слое катализатора является таким же, что и количество адсорбента углеводородов в первом слое катализатора, и концентрация активного металла во втором слое катализатора меньше, чем концентрация активного металла в первом слое катализатора, и при этом каждый материал покрытия выбран из SiO2, Al2O3, СеО2 и TiO2, и каждый активный металл представляет собой благородный металл и, необязательно, неблагородный металл, где каждый благородный металл представляет собой платину, палладий, или золото, или смесь двух или более из них, и где каждый неблагородный металл представляет собой никель, медь, марганец, железо, кобальт или цинк, и каждый адсорбент углеводородов представляет собой цеолит.

Изобретение относится к дисперсии наноразмерных частиц палладия, модифицированного (-)-цинхонидином, в метаноле или метанол-толуольной смеси в качестве катализатора асимметрического гидрирования двойной С=С связи в ненасыщенных дегидроаминокислотах.

Настоящее изобретение относится к способу получения катализатора. Способ включает в себя: (a) добавление прекурсора иридия и прекурсора палладия в воду, содержащую, по меньшей мере, один элемент, выбранный из группы, состоящей из поливинилпирролидона, N-метилпирролидона, N-винил-2-пирролидона, и этиленгликоля; (b) добавление восстанавливающего агента к полученному каталитическому металлическому коллоиду; (c) получение концентрированного раствора, содержащего металлические частицы катализатора, путем воздействия нагретым обратным потоком на полученный раствор; и (d) закрепление металлических частиц катализатора на носителе.
Изобретение относится к способу изготовления оксидного катализатора, предназначенного для использования в изготовлении ненасыщенного нитрила, где оксидный катализатор включает металлический компонент, состав которого представлен следующей формулой (1):Mo1VaSbbNbcWdZeOn...
Наверх