Компонент ротора для узла ротора машины, приводимой в действие энергией текучей среды, узел ротора и машина, способ изготовления такого компонента ротора и способ контроля его концентричности

Авторы патента:


Владельцы патента RU 2658173:

СИМЕНС АКЦИЕНГЕЗЕЛЛЬШАФТ (DE)

Компонент ротора для узла ротора машины, приводимой в действие энергией текучей среды, выполнен из материала, подверженного коррозии и/или окислению, и расположен концентрично оси вращения узла ротора. Компонент ротора содержит окружную поверхность и дополнительную окружную поверхность для контроля концентричности компонента ротора относительно оси вращения, выполненные из материала, подверженного коррозии и/или окислению. На дополнительную окружную поверхность нанесено покрытие, защищающее от коррозии и/или окисления. Другие изобретения группы относятся к узлу ротора и машине, приводимой в действие энергией текучей среды, содержащим указанный выше компонент ротора. При изготовлении компонента ротора заготавливают заготовку, выполненную из материала, подверженного коррозии и/или окислению. Формируют окружную поверхность и дополнительную окружную поверхность для контроля концентричности компонента ротора относительно оси вращения, выполненные из материала, подверженного коррозии и/или окислению. Затем наносят на дополнительную окружную поверхность покрытие, защищающее от коррозии и/или окисления. При контроле концентричности компонента после использования компонента ротора удаляют покрытие, защищающее от коррозии и/или окисления, с дополнительной окружной поверхности. Контролируют концентричность компонента ротора относительно оси вращения. Группа изобретений позволяет обеспечить контроль концентричности корпуса относительно ротора после их эксплуатации. 5 н. и 8 з.п. ф-лы, 3 ил.

 

Изобретение относится к компоненту ротора для узла ротора машины, приводимой в действие энергией текучей среды, в частности газовой турбины, паровой турбины, компрессора или аналогичного средства, в котором компонент ротора, по меньшей мере, частично выполнен из материала, подверженного коррозии и/или окислению и может быть расположен концентрично оси вращения узла ротора, причем компонент ротора содержит окружную поверхность для контроля концентричности компонента ротора относительно оси вращения.

Кроме того, изобретение относится к узлу ротора для машины, приводимой в действие энергией текучей среды, в частности газовой турбины, паровой турбины, компрессора или аналогичного средства.

Помимо этого, изобретение относится к машине, приводимой в действие энергией текучей среды, в частности газовой турбине, паровой турбине, компрессору или аналогичному средству.

Более того, изобретение относится к способу изготовления компонента ротора для узла ротора машины, приводимой в действие энергией текучей среды, в частности, газовой турбины, паровой турбины, компрессора или аналогичного средства.

В дополнение к этому, изобретение относится к способу контроля концентричности компонента ротора относительно оси вращения узла ротора машины, приводимой в действие энергией текучей среды, в частности газовой турбины, паровой турбины, компрессора или аналогичного средства.

Машина, приводимая в действие энергией текучей среды, такая как газовая турбина, паровая турбина, компрессор или аналогичное средство, содержит, по меньшей мере, один узел ротора и, по меньшей мере, один узел статора. Для оптимальной работы узла ротора необходимо, чтобы компоненты ротора узла ротора были расположены концентрично относительно оси вращения узла ротора.

Поэтому во время изначального сооружения узла ротора приходится контролировать концентричность компонентов ротора относительно оси вращения узла ротора.

Известно, что для этой цели предусматривают дисковидные компоненты ротора, выполненные из углеродистой стали, имеющие окружную поверхность на своем радиально внешнем контуре. Когда контролируют концентричность такого диска ротора относительно оси вращения узла ротора, окружную поверхность диска ротора можно ввести в контакт с подходящим измерительным устройством, таким как циферблатный индикатор.

При эксплуатации, компоненты узла ротора подвергаются воздействию рабочих текучих сред. Из-за этого компоненты ротора могут быть подвержены постепенному ухудшению качества в результате химической реакции со средой, окружающей ротор. Если окружная поверхность диска ротора подвержена, например, коррозии, то эта окружная поверхность приобретает шероховатость, так что ее нельзя будет использовать снова, например, когда узел ротора обслуживают для контроля концентричности диска ротора относительно оси вращения узла ротора. Следовательно, такой диск ротора становится непригодным для работы и не может быть использован повторно.

Нанести рентабельным методом покрытие, защищающее от коррозии, на окружную поверхность диска ротора с целью контроля концентричности диска ротора относительно оси вращения узла ротора, выполненного из углеродистой стали, не удается, потому что неизбежное изменение толщины покрытия негативно влияет на измерение концентричности.

Известно использование дисков ротора, которые выполнены из материала, стойкого к коррозии, и могут быть использованы многократно после некоторого периода службы, поскольку геометрия окружной поверхности такого диска ротора неизменна. Но материал, стойкий к коррозии, дороже, чем материал углеродистой стали.

В документе EP2019185A2 описан способ балансировки узла вращающихся деталей газотурбинного двигателя, заключающийся в том, что измеряют, по меньшей мере, одну из концентричности и параллельности каждого компонента и рассматривают в целом все возможные положения укладки компонентов в стопу для генерирования оптимизированного положения укладки в стопу для каждого компонента узла с целью минимизации небаланса узла.

В документе US2010/241393A1 описана система, которая вычисляет осевую деформацию ротора турбины.

В документе EP1188900A2 описан облопаченный диск, который представляет собой диск, имеющий обод, из которого выступает ряд лопаток. Обод включает в себя противоположные в осевом направлении выступы, один из которых включает в себя дугообразный балансирующий островок, расположенный концентрично центральной оси диска, для балансировки облопаченного диска.

Задача изобретения состоит в том, чтобы разработать компонент ротора, который выполнен, по меньшей мере, частично из материала, подверженного коррозии и/или окислению, и который обеспечивает контроль своей концентричности относительно оси вращения узла ротора после, по меньшей мере, одного периода службы и поэтому может быть использован повторно, по меньшей мере, один раз.

Эта задача решается посредством компонента ротора по п.1 формулы изобретения, узла ротора по п.6 формулы изобретения, машины, приводимой в действие энергией текучей среды, по п.7 формулы изобретения, способа по п.8 формулы изобретения и способа по п.12 формулы изобретения. Преимущественные варианты осуществления описаны в зависимых пунктах формулы изобретения, которые могут либо по отдельности, либо в любой комбинации относиться к некоторому аспекту изобретения.

П.1 формулы изобретения относится к компоненту ротора для узла ротора машины, приводимой в действие энергией текучей среды, в частности газовой турбины, паровой турбины, компрессора или аналогичного средства, причем этот компонент ротора, по меньшей мере, частично выполнен из материала, подверженного коррозии и/или окислению, и может быть расположен концентрично оси вращения узла ротора, при этом компонент ротора содержит окружную поверхность для контроля концентричности компонента ротора относительно оси вращения, отличающемуся тем, что компонент ротора содержит, по меньшей мере, одну дополнительную окружную поверхность для контроля концентричности компонента ротора относительно оси вращения, при этом на дополнительную окружную поверхность нанесено покрытие, защищающее от коррозии и/или окисления.

В соответствии с изобретением, компонент ротора содержит, по меньшей мере, одну дополнительную окружную поверхность, которую можно использовать для контроля концентричности компонента ротора узла ротора машины, приводимой в действие энергией текучей среды, после первого периода службы. Для этого покрытие, защищающее от коррозии и/или окисления, удаляют с дополнительной окружной поверхностью перед контролем упомянутой концентричности. Компонент ротора также может иметь две, три или более дополнительных окружных поверхностей, на каждую из которых нанесено покрытие, защищающее от коррозии и/или окисления. Это обеспечивает контроль концентричности такого компонента ротора относительно оси вращения узла ротора после двух, трех или более периодов службы, соответственно.

Компонент ротора может быть целиком выполнен из материала, подверженного коррозии и/или окислению. В связи с изобретением, отметим, что по меньшей мере, окружная поверхность и упомянутая, по меньшей мере, одна дополнительная поверхность выполнены из материала, подверженного коррозии и/или окислению.

Покрытие, защищающее от коррозии и/или окисления, может быть выполнено из любого пригодного материала, который можно легко удалить с дополнительной окружной поверхности без изменения геометрических характеристик дополнительной окружной поверхности.

В предпочтительном варианте, диаметр дополнительной окружной поверхности отличается от диаметра окружной поверхности.

В предпочтительном варианте, диаметр дополнительной окружной поверхности меньше, чем диаметр окружной поверхности.

В предпочтительном варианте, компонент ротора представляет собой диск ротора для сочленения полки ротора узла ротора с валом ротора узла ротора. Полка ротора может нести лопатки ротора, напримератки турбины или лопатки компрессора.

Материалом, подверженным коррозии и/или окислению, предпочтительно является углеродистая сталь, в частности низкоуглеродистая сталь.

В типичном случае, низкоуглеродистая сталь имеет содержание углерода 0,5 % или менее. В качестве альтернативы, предпочтительно, чтобы материалом, подверженным коррозии и/или окислению, был любой преимущественно черный металл или сплав на основе железа, который имеет содержание хрома или алюминия менее 11 %.

П.6 формулы изобретения относится к узлу ротора для машины, приводимой в действие энергией текучей среды, в частности газовой турбины, паровой турбины, компрессора или аналогичного средства, отличающемуся тем, что содержит, по меньшей мере, один компонент ротора, соответствующий одному из предыдущих вариантов осуществления или любой комбинации этих вариантов осуществления. Преимущества, описанные выше относительно компонента ротора, соответственно связаны с этим узлом ротора.

П.7 формулы изобретения относится к машине, приводимой в действие энергией текучей среды, в частности газовой турбине, паровой турбине, компрессору или аналогичному средству, отличающейся тем, что содержит, по меньшей мере, один вышеупомянутый узел ротора. Преимущества, описанные выше относительно компонента ротора, соответственно связаны с этой машиной, приводимой в действие энергией текучей среды.

П.8 формулы изобретения относится к способу изготовления компонента ротора для узла ротора машины, приводимой в действие энергией текучей среды, в частности газовой турбины, паровой турбины, компрессора или аналогичного средства, включающему в себя, по меньшей мере, этапы, на которых:

- обеспечивают заготовку, выполненную, по меньшей мере, частично из материала, подверженного коррозии и/или окислению;

- формируют окружную поверхность для контроля концентричности компонента ротора относительно оси вращения узла ротора;

- формируют, по меньшей мере, одну дополнительную окружную поверхность для контроля концентричности компонента ротора относительно оси вращения; и

- наносят на дополнительную окружную поверхность покрытие, защищающее от коррозии и/или окисления.

Преимущества, описанные выше относительно компонента ротора, соответственно связаны с этим способом. Первые три этапа можно объединить в один этап. Например, заготовку, имеющую окружную поверхность и, по меньшей мере, одну дополнительную окружную поверхность, можно получать путем литья или ковки.

В предпочтительном варианте, дополнительную окружную поверхность формируют таким образом, что диаметр дополнительной окружной поверхности отличается от диаметра окружной поверхности.

В предпочтительном варианте, дополнительную окружную поверхность формируют таким образом, что диаметр дополнительной окружной поверхности меньше, чем диаметр окружной поверхности.

В предпочтительном варианте, в качестве материала, подверженного коррозии и/или окислению, используют углеродистую сталь.

П.12 формулы изобретения относится к способу контроля концентричности компонента ротора, соответствующего одному из предыдущих вариантов осуществления или любой комбинации этих вариантов осуществления, относительно оси вращения узла ротора машины, приводимой в действие энергией текучей среды, в частности газовой турбины, паровой турбины, компрессора или аналогичного средства, после использования компонента ротора, включающему в себя, по меньшей мере, этапы, на которых:

- удаляют покрытие, защищающее от коррозии и/или окисления, с дополнительной окружной поверхности; и

- контролируют концентричность компонента ротора относительно оси вращения.

В предпочтительном варианте, концентричность компонента ротора относительно оси вращения контролируют с помощью индикаторного устройства, напримертного индикаторного устройства.

Ниже приводится пояснение предпочтительных вариантов осуществления предлагаемого компонента ротора в связи с прилагаемыми чертежами, демонстрирующими:

фиг.1 - сечение согласно варианту осуществления обычного компонента ротора;

фиг.2 - детализированный чертеж сечения согласно варианту осуществления нового компонента ротора в соответствии с изобретением; и

фиг.3 - детализированный чертеж сечения компонента ротора, показанного на фиг.2, перед контролем концентричности после первого периода службы.

На фиг.1 показано сечение варианта осуществления обычного компонента 1 ротора в виде диска ротора для сочленения полки ротора узла ротора (не показан) c валом ротора узла ротора. Компонент 1 ротора выполнен из углеродистой стали и может быть расположен концентрично оси вращения узла ротора. Компонент 1 ротора содержит окружную поверхность 2 для контроля концентричности компонента 1 ротора относительно оси вращения. Концентричность компонента 1 ротора относительно оси вращения контролируют с помощью обычного циферблатного индикаторного устройства 3.

На фиг.2 показан детализированный чертеж сечения варианта осуществления нового компонента 4 ротора в соответствии с изобретением в виде нового диска ротора узла ротора машины, приводимой в действие энергией текучей среды (не показана). Компонент 4 ротора может быть выполнен аналогичным компоненту 1 ротора, показанному на фиг. 1. Компонент 4 ротора полностью выполнен из углеродистой стали и может быть расположен концентрично оси вращения узла ротора машины, приводимой в действие энергией текучей среды. Компонент 4 ротора содержит окружную поверхность 5 для контроля концентричности компонента 4 ротора относительно оси вращения узла ротора. Помимо этого, компонент 4 ротора содержит дополнительную окружную поверхность 6 для контроля концентричности компонента 4 ротора относительно оси вращения, при этом на дополнительную окружную поверхность 6 нанесено покрытие 7, защищающее от коррозии и/или окисления. Диаметр дополнительной окружной поверхности 6 меньше, чем диаметр окружной поверхности 5.

Новый компонент 4 ротора содержит, по меньшей мере, на своем участке, радиально внешнем относительно оси вращения, материал, подверженный коррозии и/или окислению.

Следовательно, окружная поверхность 5 и упомянутая, по меньшей мере, одна дополнительная окружная поверхность 6 содержат материал, подверженный коррозии и/или окислению.

На фиг.3 показан детализированный чертеж сечения компонента 4 ротора, показанного на фиг.2, перед контролем концентричности после первого периода службы. Покрытие 7, защищающее от коррозии, удалено с дополнительной окружной поверхности 6. Окружная поверхность 5 подвергается коррозии и поэтому не может быть использована для контроля концентричности компонента 4 ротора относительно оси вращения узла ротора. Вместо нее, для контроля концентричности компонента 4 ротора относительно оси вращения узла ротора используют дополнительную окружную поверхность 6 без покрытия. Таким образом, компонент 4 ротора можно использовать повторно в течение второго периода службы.

Хотя изобретение подробно пояснено и описано в связи с предпочтительными вариантами осуществления, отметим, что изобретение не ограничивается описанными вариантами осуществления. На основе этих вариантов осуществления, специалист в данной области техники сможет сделать вывод о других вариантах осуществления в рамках объема защиты изобретения.

1. Компонент (4) ротора для узла ротора машины, приводимой в действие энергией текучей среды, причем этот компонент (4) ротора, по меньшей мере, частично выполнен из материала, подверженного коррозии и/или окислению, и расположен концентрично оси вращения узла ротора, при этом компонент (4) ротора содержит окружную поверхность (5) для контроля концентричности компонента (4) ротора относительно оси вращения, отличающийся тем, что компонент (4) ротора содержит, по меньшей мере, одну дополнительную окружную поверхность (6) для контроля концентричности компонента (4) ротора относительно оси вращения, при этом на дополнительную окружную поверхность (6) нанесено покрытие (7), защищающее от коррозии и/или окисления, при этом окружная поверхность (5) и упомянутая, по меньшей мере, одна дополнительная окружная поверхность (6) выполнены из материала, подверженного коррозии и/или окислению.

2. Компонент (4) ротора по п. 1, отличающийся тем, что диаметр дополнительной окружной поверхности (6) отличается от диаметра окружной поверхности (5).

3. Компонент (4) ротора по п. 2, отличающийся тем, что диаметр дополнительной окружной поверхности (6) меньше, чем диаметр окружной поверхности (5).

4. Компонент (4) ротора по одному из пп. 1-3, отличающийся тем, что представляет собой диск ротора для сочленения полки ротора узла ротора с валом ротора узла ротора.

5. Компонент (4) ротора по одному из пп. 1-4, отличающийся тем, что материалом, подверженным коррозии и/или окислению, является любой материал из группы, содержащей углеродистую сталь, низкоуглеродистую сталь, преимущественно черный металл или сплав на основе железа, который имеет содержание хрома или алюминия менее 11 %.

6. Узел ротора для машины, приводимой в действие энергией текучей среды, из группы, содержащей газовую турбину, паровую турбину или компрессор, отличающийся тем, что содержит, по меньшей мере, один компонент (4) ротора по одному из пп. 1-5.

7. Машина, приводимая в действие энергией текучей среды, из группы, содержащей газовую турбину, паровую турбину или компрессор, отличающаяся тем, что содержит, по меньшей мере, один узел ротора по п. 6.

8. Способ изготовления компонента (4) ротора для узла ротора машины, приводимой в действие энергией текучей среды, включающий в себя, по меньшей мере, этапы, на которых:

- заготавливают заготовку, выполненную, по меньшей мере, частично из материала, подверженного коррозии и/или окислению;

- формируют окружную поверхность (5) для контроля концентричности компонента (4) ротора относительно оси вращения узла ротора, причем окружная поверхность (5) выполнена из материала, подверженного коррозии и/или окислению;

- формируют, по меньшей мере, одну дополнительную окружную поверхность (6) для контроля концентричности компонента (4) ротора относительно оси вращения, причем упомянутая по меньшей мере, одна дополнительная окружная поверхность (6) выполнена из материала, подверженного коррозии и/или окислению; и

- наносят на дополнительную окружную поверхность (6) покрытие (7), защищающее от коррозии и/или окисления.

9. Способ по п. 8, в котором дополнительную окружную поверхность (6) формируют таким образом, что диаметр дополнительной окружной поверхности (6) отличается от диаметра окружной поверхности (5).

10. Способ по п. 9, в котором дополнительную окружную поверхность (6) формируют таким образом, что диаметр дополнительной окружной поверхности (6) меньше, чем диаметр окружной поверхности (5).

11. Способ по одному из пп. 8-10, в котором в качестве материала, подверженного коррозии и/или окислению, используют углеродистую сталь.

12. Способ контроля концентричности компонента (4) ротора по одному из пп. 1-5, относительно оси вращения узла ротора машины, приводимой в действие энергией текучей среды, после использования компонента (4) ротора, включающий в себя, по меньшей мере, этапы, на которых:

- удаляют покрытие (7), защищающее от коррозии и/или окисления, с дополнительной окружной поверхности (6); и

- контролируют концентричность компонента (4) ротора относительно оси вращения.

13. Способ по п. 12, в котором концентричность компонента (4) ротора относительно оси вращения контролируют с помощью индикаторного устройства (3).



 

Похожие патенты:

Изобретение может быть использовано при финишной обработке и контроле параметров крупногабаритных зеркал телескопов. Способ осуществляют путем съема контактным линейным трехточечным сферометром геометрических характеристик поверхности по ее краю по нескольким диаметральным сечениям.

Изобретение относится к измерительной технике, а именно к устройствам для контроля взаимного расположения осей. .

Изобретение относится к измерительной технике, а именно к способам определения эксцентриситета двух поверхностей , С целью повышения точности измерения путем определения положения оси второй поверхности относительно оси первой поверхности и торца перед измерением при помощи эталонной державки выставляют и закрепляют упор и тем самым совмещают положение линии наибольшего ската опорной поверхности под режущую пластину с началом отсчета углов поворота проверяемой детали.

Лопатка турбины содержит рабочую часть, ромбовидный или Т-образный хвостовик, расположенный в периферийном пазу, и закрывающую пластину между ними. Закрывающая пластина имеет переднюю поверхность, заднюю поверхность, первую поверхность прилегания и расположенную параллельно ей вторую поверхность прилегания.

Изобретение относится к области газотурбиностроения, а именно к охлаждаемым рабочим лопаткам турбин, применяемым в авиационных газотурбинных двигателях, а также в стационарных газотурбинных установках.

Монтажное устройство для монтажа направляющей лопатки в лопаточном пазу турбины включает зажимной блок и нажимной блок. Зажимной блок выполнен с возможностью создания в лопаточном пазу силового замыкания в окружном направлении, причем окружным направлением в рабочем положении монтажного устройства является направление перпендикулярно оси вращения турбины, проходящее на постоянном расстоянии вокруг оси вращения.

Способ изменения начального контура аэродинамического тракта (2 содержит этап, заключающийся в том, что прикрепляют деталь (1) изменения аэродинамического тракта (2) на аэродинамическом тракте (2).

Роторное колесо для ротора газовой турбины имеет первую сторону, имеющую изогнутые лопатки, разделенные изогнутыми канавками, и вторую сторону, имеющую радиальные лопатки, разделенные радиальными канавками.

Изобретение относится к способу (100) восстановления детали (С) турбомашины и установке (1) для лазерного плакирования (варианты). Установка (1) для лазерного плакирования содержит источник (2) лазерного излучения, порошковый питатель (3) и источник (4) нагретого воздуха.

Барабан ротора осевой турбомашины содержит стенку с профилем вращения вокруг оси вращения ротора, образующую пустотелый корпус и содержащую на своей наружной поверхности две кольцевые фиксирующие поверхности для ряда лопаток.

Диск (221) первой ступени компрессора газотурбинного двигателя (100) и способ балансировки ротора (230) компрессора газотурбинного двигателя (100). Диск (221) первой ступени компрессора газотурбинного двигателя (100) содержит корпус (240).

Турбомашина содержит лопатку с концевым бандажом, расположенным на ее радиальном конце и имеющим переднюю кромочную часть и заднюю кромочную часть. Первая часть со стороны повышенного давления передней кромочной части имеет площадь поверхности на 50-500% большую, чем ее первая часть со стороны пониженного давления.

Ротор осевой газовой турбины относится к области авиационного двигателестроения, а именно к конструкции турбин газотурбинных двигателей. Ротор осевой газовой турбины содержит основной диск с установленными на нем охлаждаемыми рабочими лопатками и покрывной диск, прикрепленный к нему с помощью байонетного соединения, образующий каналы подвода охлаждающего воздуха к хвостовой части рабочих лопаток.

Диск (221) первой ступени компрессора газотурбинного двигателя (100) и способ балансировки ротора (230) компрессора газотурбинного двигателя (100). Диск (221) первой ступени компрессора газотурбинного двигателя (100) содержит корпус (240).
Наверх