Способ факельного сжигания низкосортных углей в котельных установках

Изобретение относится к области теплоэнергетики и может быть использовано для сжигания низкосортных углей и отходов их переработки в энергетических пылеугольных котлах. Способ факельного сжигания низкосортных углей в котельных установках, при котором уголь подвергают механической активации, воспламенению и сжиганию, уголь предварительно измельчают до размера частиц 5 мм и менее, подвергают механической активации с доизмельчением до размера частиц 40 мкм и менее, затем механоактивированный уголь микропомола инжектируют воздухом в первую ступень горелочного устройства улиточного типа, затем продукты сгорания угля микропомола и основную фракцию низкосортного угля вводят во вторую ступень, пылеугольную смесь воспламеняют с помощью продуктов сгорания угля микропомола, используя его теплоту сгорания. Технический результат - эффективный и надежный способ розжига, стабилизация горения и факельного сжигания низкосортных углей в котельных установках. 3 з.п. ф-лы, 2 ил.

 

Изобретение относится к области теплоэнергетики и может быть использовано для сжигания низкосортных углей и отходов их переработки в энергетических пылеугольных котлах.

Низкосортные угольные топлива - это топлива с высокой зольностью и низкой теплотворной способностью. Обычно их сжигают в псевдоожиженном слое на инертном материале, в частности на катализаторе.

Известен способ розжига и стабилизации горения низкосортных углей (патент РФ №98122200, 1998 г., Н05Н 1/00), в котором в качестве плазмообразующего газа используют дымовые газы, а для создания окислительной среды применяют смесь воздуха с водяным паром. Горючими газами служит смесь оксида углерода и водорода, которые подаются для дожигания в котельный агрегат.

Недостатки данного способа:

- сложная реализация управления водяным паром, при использовании дымовых газов, как плазмообразующего агента;

- способ малоэнергоэффективен в силу сопутствующих восстановительных эндотермических реакций;

- использование плазматрона в пылеугольной горелке требует значительных энергозатрат.

Наиболее близким по технической сущности к заявляемому способу является способ плазменно-угольной растопки пылеугольного котла и стабилизации горения факела в нем (патент US 5156100 А, F23C 1/04, F23D 1/00, F23Q 13/00, F23N 1/02, 1992 г.), включающий подачу в первую ступень камеры термохимической подготовка (ТХП) части потока, поступающего в данную горелку, пылеугольной аэросмеси, генерирование низкотемпературной плазмы в плазматроне, подачу струи плазмы на вход в первую ступень камеры ТХП и воспламенение аэросмеси плазмой, получение топливной смеси в первой ступени камеры ТХП в результате горения части угля и нагрева аэросмеси до выхода из угля летучих компонентов и частичной газификации коксового остатка, подачу полученной топливной смеси во вторую ступень камеры ТХП, подачу во вторую ступень камеры ТХП второй части аэросмеси и ее воспламенение этой топливной смесью, нагрев этой второй аэросмеси до выхода летучих компонентов и частичной газификации коксового остатка вследствие частичного горения угля, получение в результате этого топливной смеси из всей подаваемой в данную горелку аэросмеси, подачу полученной топливной смеси из плазменно-угольной горелки в топку котла, подачу вторичного воздуха из этой горелки в топку с образованием горячего факела, при этом во вторую ступень камеры ТХП подают аэросмесь с содержанием кислорода таким, чтобы в смеси с газами из первой ступени камеры ТХП его концентрация была в пределах 8-10%, что (по мнению автора) устраняет шлакование второй ступени камеры ТХП и обеспечивает надежную и безостановочную растопку котла и подсветку факела без использования второго сопутствующего вида топлива.

Недостатками данного способа являются:

- поддерживать требующую концентрацию кислорода в аэросмеси (8-10%) с газами, уходящими из второй ступени камеры ТХП, практически реализовать невозможно, ввиду многочисленных факторов, влияющих на данный процесс (например, из-за непредсказуемости содержания влаги и самого кислорода в воздушном потоке, как и непостоянство этих составляющих в самом топливе);

- использование плазматрона в пылеугольной горелки требует значительных энергозатрат.

Задачей настоящего изобретения является создание нового более эффективного и надежного способа с улучшенными технико-экономическими и эксплуатационными показателями.

Поставленная задача решается тем, что в способе факельного сжигания низкосортных углей в котельных установках, при котором уголь подвергают механической активации, воспламенению и сжиганию, согласно изобретению, низкосортный уголь предварительно измельчают до размера частиц 5 мм и менее, подвергают механической активации в мельнице-активаторе дезинтеграторного типа с доизмельчением до размера частиц 40 мкм и менее, затем механоактивированный уголь микропомола инжектируют воздухом, вводя через электрохимический генератор (ЭХГ), в первую ступень подачи и сжигания механо- и электроактивированного угля микропомола горелочного устройства улиточного типа с полным выгоранием угля микропомола в окислительной среде, затем продукты сгорания угля микропомола из первой ступени и основную фракцию низкосортного угля вводят во вторую ступень подачи и сжигания основной фракции низкосортного угля, пылеугольную смесь воспламеняют с помощью продуктов сгорания угля микропомола в первой ступени, используя его теплоту сгорания.

При использовании сильно забалластированных низкосортных углей, в первую ступень подачи и сжигания механо- и электроактивированного угля микропомола горелочного устройства улиточного типа подают механоактивированный высокореакционных уголь, проходящий через ЭХГ.

Для повышения производительности горелочного устройства, продукты сгорания пылеугольного топлива из первой ступени в противотоке подаются на вторую ступень, интенсивно смешиваются (встречные потоки в первой и второй ступени формируются геометрией улиточной формы).

Для повышения устойчивости горения и производительности горелки, работающей на сильно забалластированных углях, в первую ступень горелки целесообразно подавать механоактивированный высокореакционный уголь микропомола, с прохождением его через устройство электрохимической активации.

Сущность изобретения поясняется рисунками (фиг. 1 и 2), где:

1 - раздаточный бункер;

2 - мельница-активатор дезинтеграторного типа;

3 - инжектор;

4 - электрохимический генератор (ЭХГ);

5 - первая ступень подачи и сжигания механо- и электроактивированного угля микропомола;

6 - вторая ступень подачи и сжигания основной фракции низкосортного угля;

7 - предтопок;

8 - топка котла.

Сведения, подтверждающие возможность существование заявленного изобретения с помощью указанного технического результата, состоят в следующем.

Уголь, предназначенный для сжигания, подготавливают до определенного размера известным, например, ШБМ (шаровая барабанная мельница) способом. После сепарации крупную фракцию домалывают возвратом на ШБМ (на рисунке система условно не показана). Подготовленный таким образом уголь из раздаточного бункера 1 направляют в мельницу-активатор дезинтеграторного типа 2, которую устанавливают вблизи первой ступени 5. В дезинтеграторе уголь механоактивируют, доводя одновременно его тонину до размера частиц не более 40 мкм, а затем инжектируют 3 первичным воздухом (избыток воздуха α≤1) в первую ступень 5 по касательной (улиточно) к ее продольной оси, т.е. тангенциально. Ввод пылевоздушной механоактивированной пылеугольной смеси в первую ступень осуществляют прямоточно через высоковольтный высокочастотный электрохимический генератор (ЭХГ) 4. Электрохимический генератор 4 создает высокоокисляющую озонную среду с температурой выше температуры воспламенения частиц угля. При этом ЭХГ позволяет активировать пылеугольную смесь со стороны окислителя. Одновременное повышение механохимической активности угольного вещества и окислителя позволяет осуществлять воспламенение и устойчивое горение пылеугольного факела.

Ввод угля микропомола с тангенциальным впрыском струи, выходящей из ЭХГ 4, дает возможность оценить и обеспечить необходимое время пребывания для воспламенения частиц, гарантирует эффективность, надежность воспламенения и сжигания угля микропомола внутри первой ступени 5.

Основной же поток низкореакционного угля из раздаточный бункера 1 вводят совместно с воздушным потоком тангенциально во вторую ступень 6, точнее в ее вихревой смеситель, куда одновременно тангенциально в противотоке вводятся продукты сгорания угля микропомола из первой ступени 5. Это обстоятельство способствует их интенсивному перемешиванию, образованию устойчивого вихря внутри смесителя второй ступени. Продукты сгорания угля микропомола и основная фракция низкореакционного угля с воздухом (пылеугольная смесь) далее движутся поступательно и вращательно вдоль продольной оси предтопка 7, вплоть до камеры котла 8.

Следует отметить, что уголь микропомола сгорает в первой ступени при максимальной для данной марки угля температуре и с полной отдачей теплотворной способности. Под воздействием высокой температуры и при интенсивном перемешивании пылеугльная смесь во второй ступени быстро прогревается и воспламеняется, поглощая полностью все теплоту сгорания угля микропомола. При сжигании очень низкореакционного основного топлива, вводимого во вторую ступень, представляется возможным подавать в первую ступень механоактивированный высокореакционный уголь микропомола с использованием электрохимического генератора для его химической активации и поджига.

Технический эффект от использования предложенного изобретения состоит в следующем. Предложенный способ был апробирован на стенде тепловой мощностью 5 МВт (в ИТФ СО РАН, г. Новосибирск) при сжигании высокореакционного (Кузнецкого, марки Д) и низкореакционного спекающего угля марки СС. Опыты проведены с расходом воздуха в диапазоне 207-373 м3/ч, расходом топлива 50-220 кг/ч, коэффициент избытка воздуха а варьировался от 0.18 до 0.81. Исследован температурный режим и проведен газовый анализ продуктов горения в камерах первой и второй ступени, предтопка, камеры дожигания (котла) при сжигании углей с использованием механохимической и электрохимической активации. После камеры дожигания производился отбор летучей золы - уносов по изокинетическому методу отбора, а также анализ состава дымовых газов с помощью газоанализатора TESTO-340. Значительное внимание в опытах было уделено изменению геометрической компоновки электродов ЭХГ, для создания устойчивой дуги при исследуемых скоростях (до 20 м/с) пылеугольной смеси угля микропомола. Потребляемая мощность ЭХГ при этом не превышала 3,5 кВт, что существенно ниже потребляемой мощности макетного плазматрона. Сравнительное энергопотребление плазматрона - 15-25 кВт.

Результаты исследований позволили выявить приемлемые технико-экологические показатели: через 100 секунд реализовался автотермический режим горения при температуре в диапазоне 1200-1400°С. Анализ газа показал, что в конце камеры реагирования (предтопка) происходит практически полное выгорание кислорода. Анализ опытных данных показал, что при использовании двухступенчатой схемы сжигания механо-электроактивированных углей микропомола можно снизить выброс токсичных газов типа NOx на 30% и уменьшить механический недожог на 35% по сравнению с существующими предельно допустимыми нормами.

1. Способ факельного сжигания низкосортных углей в котельных установках, при котором уголь подвергают механической активации, воспламенению и сжиганию, отличающийся тем, что уголь предварительно измельчают до размера частиц 5 мм и менее, подвергают механической активации с доизмельчением до размера частиц 40 мкм и менее, затем механоактивированный уголь микропомола инжектируют воздухом в первую ступень горелочного устройства улиточного типа, затем продукты сгорания угля микропомола и основную фракцию низкосортного угля вводят во вторую ступень, пылеугольную смесь воспламеняют с помощью продуктов сгорания угля микропомола, используя его теплоту сгорания.

2. Способ по п. 1, отличающийся тем, что низкосортный уголь подвергают механической активации в мельнице-активаторе дезинтеграторного типа.

3. Способ по п. 1, отличающийся тем, что механоактивированный уголь микропомола инжектируют воздухом в первую ступень горелочного устройства улиточного типа, предварительно пропуская через электрохимический генератор (ЭХГ).

4. Способ по п. 1, отличающийся тем, что в первую ступень горелочного устройства улиточного типа подают механоактивированный высокореакционный уголь.



 

Похожие патенты:

Изобретение относится к области теплоэнергетики и может быть использовано в любой энергетической установке по переработке угля в другие виды топлива. Способ сжигания угля, подвергнутого механической и плазменной обработке, включает механическую активацию, воспламенение и сжигание, уголь предварительно дробят и разделяют на мелкодисперсную и крупнодисперсную фракции, из которых мелкодисперсную фракцию угля подвергают механической активации и доводке тонины до размера частиц зерна 40 мкм и менее, затем полученный уголь микропомола вводят тангенциально за счет инжекции в первую газификационную ступень и воспламеняют с помощью стартового плазмотрона, причем ввод осуществляют в направлении, противоположном направлению тангенциального впрыска плазменной струи из стартового плазмотрона, крупнодисперсную фракцию угля, воздушный поток и продукты сгорания угля микропомола из первой газификационной ступени одновременно вводят во вторую газификационную ступень по касательной к ее продольной оси и в одной плоскости, перпендикулярной продольной оси второй газификационной ступени, пылеугольную смесь воспламеняют с помощью продуктов сгорания угля микропомола, используя теплоту сгорания угля микропомола, при этом эффективность процесса газификации и сжигания пылеугольной смеси во второй газификационной ступени обеспечивают за счет импульсного включения дополнительного управляющего плазмотрона, причем впрыск плазменной струи из дополнительного управляющего плазмотрона осуществляют вдоль оси второй газификационной ступени, перпендикулярно плоскости ввода пылеугольной смеси и в направлении, совпадающем с направлением осевого перемещения продуктов сгорания пылеугольной смеси внутри второй газификационной ступени.

Изобретение относится к области энергомашиностроения и может быть использовано при автоматическом розжиге топки котлов тепловых электростанций, работающих на газообразном топливе.

Изобретение относится к лазерным свечам зажигания с форкамерой и может найти применение в транспорте и в теплоэнергетике. Задачи создания изобретения состоят в уменьшении габаритов воспламенителя и повышении эффективности искрового разряда.

Изобретение относится к акустической теплотехнике. Газодинамический воспламенитель содержит форкамеру с выходным отверстием, ускоритель с соплом, акустический резонатор и магистрали с регулирующими клапанами подвода окислителя и горючего к ускорителю.

Запальное устройство с двунаправленной струей для огнетушителя с горячим аэрозолем содержит держатель (5) и закрепленный на нем колпачок (6). В колпачке (6) расположены воспламенитель (3) и запальная головка (4), установленная в центре воспламенителя (3) и соединенная с токоподводящим проводом (1).

Изобретение относится к акустической теплотехнике и может быть использовано в авиационных и ракетных двигателях, стендовых газоструйных устройствах и при стендовых испытаниях двигателей для создания вспомогательного факела и воспламенения в потоке газообразных несамовоспламеняющихся топливных смесей, состоящих из окислителя и горючего.

Изобретение относится к теплоэнергетике и может быть использовано на тепловых электростанциях, в котельных и печном хозяйстве предприятий при сжигании распыленного водоугольного топлива или пылевоздушной смеси.

Изобретение относится к области энергетики, в частности к запальным горелкам в устройствах для сжигания газообразного топлива, и может быть использовано в газогорелочных устройствах паровых и водогрейных котлов.

Изобретение относится к способам и устройствам для воспламенения топлива и может быть использовано для зажигания скоростных потоков горючих смесей в различных технологических устройствах и энергетических установках, в частности в импульсно-детонационных двигателях летательных аппаратов.

Изобретение относится к горелке с плазменным розжигом. .

Изобретение относится к области пылеприготовления и может быть использовано в устройствах, изменяющих концентрацию и распределение пылегазовых потоков в системах подготовки твердых топлив, например, к сжиганию.

Изобретение относится к энергетике. Делитель-концентратор образован размещенными одна над другой цилиндрическими обечайками с уменьшающимися диаметрами по ходу потока, каждая из которых соединена патрубком с топочной камерой и содержит подведенный к верхней обечайке трубопровод, а в нижней обечайке которого коаксиально расположены цилиндрическая полая вставка с завихрителем и рассекатель.

Изобретение относится к области энергетики. Делитель-концентратор пылегазового потока содержит цилиндрический корпус, в котором коаксиально расположены цилиндрическая полая вставка и завихритель, в верхней выходной части цилиндрического корпуса размещены основной и сбросной отводы, внутри цилиндрического корпуса установлен трубопровод с расположенным внутри него завихрителем, нижняя часть трубопровода присоединена к цилиндрической полой вставке, а верхняя часть трубопровода заканчивается выходным конусообразным расширением напротив сбросного отвода, причем между верхней частью трубопровода и нижним концом сбросного отвода установлен полый конусный отражатель, состоящий из сваренных между собой по основанию конусов, расположенных коаксиально трубам сбросного отвода и трубопровода.

Изобретение относится к теплоэнергетике и может быть использовано для подготовки твердого топлива к сжиганию на тепловых электрических станциях (ТЭС). Установка подготовки твердого топлива к сжиганию содержит технологически соединенные между собой тракт сырого топлива, бункер сырого топлива, обезвоживающее устройство, соединенное с трактом горячего воздуха, бункер запаса топлива, измельчающее устройство, тракт топливоподачи, соединенный с бункером запаса топлива.
Изобретение относится к теплоэнергетике, а более конкретно к способу оптимизации процесса сжигания угольного топлива в вихревой топке энергетической установки. Способ включает использование в режиме запуска энергетической установки угля микропомола с размерами частиц не более 10 мкм, получаемого в трехкамерном дезинтеграторе, в стационарном режиме - угля обычного помола, получаемого в двухступенчатой мельнице с помольными шарами и активатором.

Изобретение относится к области энергетики. Устройство для сжигания пылевидного топлива содержит устройство сжатия воздуха, устройство подготовки воздуха с камерой подготовки воздуха, устройство плазмохимической обработки пылевидного топлива, включающее плазмотрон, и камеру горения, а также трубопроводы, связывающие их.

Изобретение относится к области энергетики. Устройство для сжигания пылевидного топлива содержит устройство 1 сжатия воздуха, устройство 2 подготовки воздуха с камерой 3 подготовки воздуха, устройство 4 плазмохимической обработки пылевидного топлива, включающее плазмотрон 5 и камеру 6 горения, а также трубопроводы, связывающие их.

Изобретение относится к области энергетики. Способ сжигания пылевидного топлива, заключающийся в том, что разделяют воздух методом адсорбирования азота на цеолите, формируют первый поток воздуха, обогащенный кислородом, и второй поток воздуха, обогащенный азотом, выделенным с поверхности цеолита методом его нагрева, затем второй поток воздуха разделяют на основной и дополнительный потоки, дополнительный поток смешивают с пылевидным топливом и смесь подают в начало камеры зажигания, причем часть смеси дополнительного потока воздуха и пылевидного топлива подают через плазмотрон в камеру зажигания, где формируют факел газификации части пылевидного топлива в условиях недостатка кислорода, от первого потока воздуха отделяют часть и посредством трубы отбора воздуха подают в камеру зажигания за выходной срез плазмотрона, после плазмотрона формируют факел зажигания части газифицированного в плазмотроне пылевидного топлива, которым воспламеняют смесь дополнительного потока воздуха и пылевидного топлива, продукты горения из камеры зажигания смешивают с основным потоком воздуха и при недостатке кислорода подают в камеру горения, оставшуюся часть первого потока, обогащенную кислородом, подают в камеру подготовки воздуха, где обрабатывают лазерным излучением твердотельного лазера с длиной волны 762±0,5 и/или 1268±0,5 нм, которая вызывает переход молекул кислорода из основного электронного состояния в возбужденное синглетное состояние O 2 ( b 1 ∑ g + ) , путем подачи лазерного излучения в цилиндрическую камеру подготовки воздуха с зеркальной поверхностью, по меньшей мере, в одном месте под углом к ее поверхности, меньшим угла полного отражения от зеркальной поверхности цилиндрической камеры подготовки воздуха по винтообразной ломаной кривой с шагом между соседними витками винтообразной ломаной линии, большим линейного габаритного размера, измеренного вдоль оси цилиндрической камеры подготовки воздуха, обработанную часть первого потока воздуха с синглетным кислородом подают через коаксиальную перфорированную перегородку в пристеночную область камеры горения, при этом увеличивают концентрацию синглетного кислорода по направлению к выходу из камеры горения.

Группа изобретений относится к теплоэнергетике и касается технологии получения, транспортировки, раздельного и совместного сжигания механоактивированного угля микропомола и угля штатной системы пылеприготовления в вихревой растопочной горелке при растопке пылеугольного котла и стабилизации горения с целью замещения дорогостоящего мазута или природного газа.

Изобретение относится к устройствам сжигания твердого пылевидного топлива и может быть использовано в процессах различного технологического назначения в энергетике, ЖКХ, металлургии, в паровых котлах, сушильных установках и т.д.
Наверх