Способ определения коэффициента диффузии растворителей в массивных изделиях из капиллярно-пористых материалов

Использование: для определения коэффициента диффузии растворителей в массивных изделиях из капиллярно-пористых материалов. Сущность изобретения заключается в том, что создают в исследуемом изделии равномерное начальное содержание распределенного в твердой фазе растворителя, приводят плоскую поверхность изделия в контакт с импульсным точечным источником растворителя, гидроизолируют эту поверхность, располагают электроды гальванического преобразователя на этой поверхности по концентрической окружности относительно точки импульсного воздействия, при этом фиксируют два момента времени τ1 и τ2, при которых достигаются равные значения сигнала гальванического преобразователя до и после момента наступления максимума сигнала преобразователя, а расчет коэффициента диффузии производят по определенной математической формуле. Технический результат: повышение точности измерения коэффициента диффузии растворителей в массивных изделиях из капиллярно-пористых материалов.

 

Изобретение относится к измерительной технике и может быть использовано при исследовании процессов массопереноса в капиллярно-пористых материалах для определения коэффициентов диффузии растворителей в строительных материалах и изделиях, а также в пищевой, химической и других отраслях промышленности.

Известен способ определения коэффициента массопроводности и потенциалопроводности массопереноса (АС 174005, кл. G01kN 421, 951, 1965), заключающийся в импульсном увлажнении слоя материала и измерении на заданном расстоянии от этого слоя изменения влагосодержания материала во времени. Коэффициент массопроводности вычисляется по установленной зависимости. Недостатками этого способа являются осуществление разрушающего контроля опытного образца при размещении датчиков во внутренних слоях исследуемого тела, невозможность определения коэффициента диффузии других растворителей, кроме воды, большая трудоемкость метода при подготовке образцов, необходимость индивидуальной градуировки датчиков по каждому материалу.

Наиболее близким является способ определения коэффициента диффузии растворителей в массивных изделиях из капиллярно-пористых материалов (патент РФ на изобретение №2492457, G01N 27/26, 15/08, 10.09.2013, бюл. №25), заключающийся в создании в исследуемом изделии равномерного начального содержания распределенного в твердой фазе растворителя, приведении плоской поверхности изделия в контакт с импульсным точечным источником растворителя, гидроизоляции этой поверхности, расположении электродов гальванического преобразователя на этой поверхности по концентрической окружности относительно точки импульсного воздействия, определении времени достижения максимума ЭДС гальванического преобразователя и расчете по нему коэффициента диффузии по установленной зависимости.

Недостатком этого способа являются невысокая точность определения момента достижения максимума ЭДС, где производная сигнала преобразователя по времени близка к нулю, и наблюдается недостаточная чувствительность измеряемого параметра к изменению времени.

Техническая задача предлагаемого технического решения предполагает повышение точности измерения коэффициента диффузии растворителей в массивных изделиях из капиллярно-пористых материалов.

Техническая задача достигается тем, что в способе определения коэффициента диффузии в массивных изделиях из капиллярно-пористых материалов, имеющих по крайней мере одну плоскую поверхность (например, цементные или гипсовые плиты), включающем создание в исследуемом изделии равномерного начального содержания распределенного в твердой фазе растворителя, приведение плоской поверхности изделия в контакт с импульсным точечным источником растворителя, гидроизоляцию этой поверхности, расположение электродов гальванического преобразователя на этой поверхности по концентрической окружности относительно точки импульсного воздействия.

В отличие от прототипа (патент РФ на изобретение №2492457, G01N 27/26, 15/08, 10.09.2013, бюл. №25) фиксируют два момента времени τ1 и τ2, при которых достигаются равные значения сигнала гальванического преобразователя до и после момента наступления максимума сигнала преобразователя, а расчет коэффициента диффузии производят по формуле:

где r0 - расстояние между электродами гальванического преобразователя и точкой воздействия дозой растворителя на поверхность контролируемого изделия.

Сущность предлагаемого способа заключается в следующем: к плоской поверхности изделия с равномерным начальным распределением растворителя (в том числе и нулевым) прижимается зонд с импульсным точечным источником дозы растворителя и расположенными на концентрической окружности относительно точки импульсного воздействия на изделие электродами гальванического преобразователя. После импульсной подачи дозы растворителя в точку на поверхности изделия зонд обеспечивает гидроизоляцию поверхности изделия в зоне действия источника растворителя и прилегающей к ней области контроля распространения диффузанта. После подачи импульса растворителя (мгновенного увлажнения точки на поверхности изделия) фиксируют два момента времени τ1 и τ2, при которых достигаются равные значения сигнала гальванического преобразователя соответственно до и после момента наступления максимума сигнала преобразователя, рассчитывают коэффициент диффузии растворителя в исследуемом материале по установленной зависимости, что обеспечивает повышение точности контроля.

Процесс распространения растворителя в массивном изделии из капиллярно-пористых материалов (при условии, что минимальные размеры изделия относительно точки импульсного воздействия превышают 10 r0, где r0 - расстояние от источника до электродов гальванического преобразователя), после нанесения такого импульса описывается краевой задачей массопереноса в неограниченной среде при нанесении импульсного воздействия от точечного источника массы:

, τ>0, 0≤r<∞

U(r,0)=U0; ; U(∞,τ)=U0;

где U(r,τ) - концентрация растворителя на поверхности сферы радиусом г относительно точки импульсного подвода дозы растворителя к образцу в момент времени τ; D - коэффициент диффузии растворителя; δ(r,τ) - δ - функция Дирака; ρ0 - плотность абсолютно сухого исследуемого материала; Q - количество жидкой фазы, подведенной из дозатора к плоской поверхности изделия исследуемого капиллярно-пористого материала; U0 - начальная концентрация растворителя в исследуемом материале в момент времени τ=0.

В этом случае изменение концентрации растворителя в капиллярно-пористом материале в зоне действия источника описывается функцией:

Коэффициент диффузии может быть найден по известной формуле:

где τmax - время, соответствующее максимуму на кривой U(r0,τ) изменения концентрации на расстоянии r0 от источника.

Расчетная зависимость для определения искомого коэффициента диффузии получена на основании следующих исследований. После импульсного воздействия дозой растворителя на заданном расстоянии r0 от точечного источника наблюдается изменение концентрации в виде характерных кривых, имеющих восходящую ветвь от начала импульсного воздействия до момента τmax и нисходящую ветвь, наблюдаемую после наступления момента τmax. При этом одинаковые значения концентрации U*, достигаемые в моменты времени τ1 и τ2 соответственно на восходящей и нисходящей ветвях кривой изменения концентрации во времени, могут быть определены из выражения (1) с учетом (2):

Деление (3) на (4) приводит к следующему выражению:

Из (5) получено

Из (6) с учетом (2) получено расчетное выражение для определения искомого коэффициента диффузии:

Для определения искомого коэффициента диффузии в предлагаемом способе измерению в моменты времени τ1 и τ2 подлежит не концентрация U(r0,τ), а связанная с ней ЭДС применяемого гальванического преобразователя в отсутствие предварительно найденной в результате градуировки статической характеристики. В связи с тем, что статическая характеристика имеет монотонный характер, имеется однозначная связь ЭДС преобразователя и концентрации растворителя, что позволяет определять моменты времени τ1 и τ2, соответствующие двум равным значениям U*(r01) и U*(r02), в момент достижения равных значений ЭДС.

За счет выбора одинаковых значений ЭДС преобразователя, соответствующих моментам времени τ1 и τ2, на участках кривой изменения выходной характеристики преобразователя с достаточно высокой чувствительностью к изменению времени обеспечивается повышение точности определения данных моментов времени и искомого коэффициента диффузии.

Способ определения коэффициента диффузии растворителей в массивных изделиях из капиллярно-пористых материалов, заключающийся в создании в исследуемом изделии равномерного начального содержания распределенного в твердой фазе растворителя, приведении плоской поверхности изделия в контакт с импульсным точечным источником растворителя, гидроизоляции этой поверхности, расположении электродов гальванического преобразователя на этой поверхности по концентрической окружности относительно точки импульсного воздействия, отличающийся тем, что фиксируют два момента времени τ1 и τ2, при которых достигаются равные значения сигнала гальванического преобразователя до и после момента наступления максимума сигнала преобразователя, а расчет коэффициента диффузии производят по формуле:

где r0 - расстояние между электродами гальванического преобразователя и точкой воздействия дозой растворителя на поверхность контролируемого изделия.



 

Похожие патенты:

Изобретение относится к аналитической химии органических веществ и раскрывает способ определения содержания нитроксильных радикалов в сырьевых потоках непредельных мономеров.

Использование: для оценки поверхностного потенциала и знака заряда поверхности контактных линз. Сущность изобретения заключается в том, что способ основан на исследовании электрофоретического поведения диспергированного материала в водной среде, в качестве материала используют контактные линзы, которые сушат при температуре 80°С, охлаждают в среде жидкого азота, измельчают, а затем диспергируют в водной среде ультразвуком, величину поверхностного потенциала частиц оценивают с помощью прибора Brookhaven ZetaPlus с использованием опции электрофоретического рассеяния света, а знак заряда поверхности контактных линз определяют с помощью программного обеспечения вышеуказанного прибора, для чего в кювету с суспензией помещают электродную систему, на которую подают электрический ток, и по допплеровскому смещению частоты рассеянного света определяют направление движения частиц, то есть знак их заряда, и скорость движения, пропорциональную величине заряда частицы.

Изобретение относится к биотехнологии и охране окружающей среды в области контроля загрязненности воды органическими веществами. Биосенсор для определения наличия органических веществ в воде состоит из пустотелого цилиндрического корпуса, в нижнем основании которого расположен анод, а в верхнем основании цилиндра - катод, которые через токоотводящие провода соединены с измерительным электронным блоком.

Использование: для создания электрохимического датчика. Сущность изобретения заключается в том, что устанавливаемое на глазу устройство для измерения концентрации аналита в слезной пленке содержит прозрачный полимерный материал, имеющий обращенную к глазу поверхность и обращенную наружу поверхность, причем прозрачный полимерный материал выполнен съемно устанавливаемым спереди от поверхности глаза; подложку, по меньшей мере частично заделанную внутри упомянутого полимерного материала; антенну, расположенную на подложке; двухэлектродный электрохимический датчик, расположенный на подложке и включающий в себя: рабочий электрод, имеющий по меньшей мере один размер менее чем 25 микрометров; и электрод сравнения, имеющий по меньшей мере в пять раз большую площадь, чем площадь рабочего электрода; и контроллер, электрически соединенный с электрохимическим датчиком и антенной, причем контроллер выполнен с возможностью: (i) прикладывания напряжения между рабочим электродом и электродом сравнения, достаточного для генерации амперометрического тока, связанного с концентрацией аналита в текучей среде, воздействию которой подвергается устанавливаемое на глазу устройство; (ii) измерения этого амперометрического тока и (iii) использования антенны для выдачи показаний измеренного амперометрического тока, причем часть прозрачного полимерного материала по меньшей мере частично окружает рабочий электрод и электрод сравнения, так что электрический ток, переносимый между рабочим электродом и электродом сравнения, проходит через эту по меньшей мере частично окружающую часть прозрачного полимерного материала.

Изобретение относится к измерительной технике и может быть использовано при исследовании процессов массопереноса и для определения коэффициентов диффузии растворителей в изделиях из листовых капиллярно-пористых материалов в бумажной, легкой, строительной и других отраслях промышленности.

Изобретение относится к области медицины и может быть использовано в контрольно-аналитических лабораториях для стандартизации и контроля качества лекарственных средств, а именно для количественного определения фенибута методом капиллярного электрофореза.Способ количественного определения фенибута в микрокапсулах методом капиллярного электрофореза включает выполнение анализа в кварцевом капилляре эффективной длиной 0,5 м, внутренним диаметром 75 мкм, под действие электрического поля с использованием раствора ведущего электролита, с последующим спектрофотометрическим определением продуктов реакции, в качестве ведущего электролита используется 10 мМ раствор натрия тетраборнокислого 10-водного с рН 9,2, анализ проводится при напряжении +20 кВ, температуре 30°С и длине волны детектирования 193 нм.

Изобретение относится к электрохимическому сенсору для мониторинга воздуха на содержание летучих органических токсичных веществ, состоящему из планарной электродной группы, фонового электролита, пористой гидрофильной мембраны, полимерной газопроницаемой мембраны, герметичной емкости.

Изобретение относится к измерительной технике и может быть использовано в системах автоматического контроля водно-химического режима для тепловой, атомной и промышленной энергетики.

Изобретение относится к области гидрофизики и биохимии, а именно к способам обнаружения изменений электропроводимости водной среды в результате изменения структуры (концентрации) исследуемого раствора.

Группа изобретений относится к медицине, а именно к лабораторной диагностике, и может быть использована для различения между образцом крови и водным образцом, отличным от крови.

Изобретение относится к полупроводниковой технике. Сущность изобретения заключается в формировании структуры сенсора газообразных токсичных веществ на основе пленок графена. Техническим результатом является достижение предела чувствительности графена к разнообразным токсичным газообразным веществам. Согласно изобретению пленки графена на поверхности карбида кремния получают термодеструкцией. Травление пленки графена производят ионно-лучевым методом с использованием маски фоторезиста, металлизацию электродов осуществляют методом взрывной фотолитографии, затем напыляют на омические контакты никелевое покрытие с последующим формированием топологии усиления контактных площадок. Способ может быть использован в процессе промышленного производства сенсоров на основе графена.
Наверх