Модернизированная спутниковая навигационная система глонасс

Предлагаемое изобретение относится к области спутниковых навигационных систем и направлено на совершенствование существующей спутниковой навигационной системы ГЛОНАСС. В модернизированной спутниковой навигационной системе ГЛОНАСС, состоящей из существующей группировки N1 базовых навигационных космических аппаратов спутниковой навигационной системы ГЛОНАСС, для которых используют формирование сигнала на основе M-последовательности первого вида, введена группировка N2 дополнительных навигационных космических аппаратов, для которых используют формирование сигнала на основе М-последовательности второго вида, где N2 дополнительных навигационных космических аппарата представляют собой двадцать четыре навигационных космических аппарата, расположенных аналогично исходной системе ГЛОНАСС в трёх промежуточных по долготе плоскостях относительно орбитальных плоскостей исходной системы ГЛОНАСС. Технический результат – повышение эффективности распространения и приема навигационного сигнала. 2 ил., 1 табл.

 

Предлагаемое изобретение относится к области спутниковых навигационных систем и направлено на совершенствование существующей спутниковой навигационной системы ГЛОНАСС.

Известны различные направления совершенствования и модернизации спутниковых навигационных систем, практическим приложением которых должна стать модернизация спутниковой навигационной системы ГЛОНАСС. Например, в патенте RU2314232 предложена спутниковая навигационная система, представляющая собой альтернативную группировку космических аппаратов, заданы орбиты для размещения космических аппаратов данной спутниковой системы. В свою очередь, в предлагаемом изобретении предложено решить существующую проблему формирования нескольких группировок космических аппаратов – по факту базовой и дополнительной, и обеспечить эффективное распространение и приём навигационного сигнала.

Для преодоления описанной выше технической проблемы предложена модернизированная спутниковая навигационная система ГЛОНАСС, состоящая из существующей группировки N1 базовых навигационных космических аппаратов спутниковой навигационной системы ГЛОНАСС, для которых используют формирование сигнала на основе M-последовательности первого вида, введена группировка N2 дополнительных навигационных космических аппаратов, для которых используют формирование сигнала на основе М-последовательности второго вида, где N2 дополнительных навигационных космических аппаратов представляют собой двадцать четыре навигационных космических аппарата, расположенных аналогично исходной системе ГЛОНАСС в трёх промежуточных по долготе плоскостях относительно орбитальных плоскостей исходной системы ГЛОНАСС.

Практическое использование заявленного изобретения обосновано следующим образом.

Очевидным направлением развития спутниковых навигационных систем, включая систему ГЛОНАСС, которое позволит повысить точность определения места положения объекта, является наращивание численности группировки космических аппаратов (см. аналог). Также очевидно, что наращивание численности группировки космических аппаратов с одновременным изменением структуры существующей спутниковой навигационной системы, которая может быть проанализирована, как большая система, приведёт к её усложнению и, следовательно, снижению эффективности использования. Таким образом, существует актуальная задача создания более точной, модернизированной системы ГЛОНАСС, построенной путём наращивания группировки навигационных космических аппаратов без внесения изменений в уже сложившуюся конфигурацию спутниковой навигационной системы ГЛОНАСС, состоящую из двадцати четырёх навигационных космических аппаратов.

Первоначально каждому из двадцати четырёх навигационных космических аппаратов ГЛОНАСС приписывалась своя литерная несущая частота, отстоящая от соседних несущих частот примерно на 0,5 МГц, причём на каждой из двадцати четырёх несущих частот излучалась в качестве дальномерного кода одна и та же М-последовательность длиной 511 двоичных единиц с хорошими автокорреляционными свойствами. С развитием международного сотрудничества количество литерных несущих частот пришлось сократить до шестнадцати, при этом часть противоположных навигационных космических аппаратов в одной плоскости (антиподы) стала попарно работать на одной и той же частоте. Наличие в системе антиподов на одной частоте на работу наземных потребителей никак не повлияло, однако возникли проблемы интерференции сигналов космических аппаратов – антиподов для космических аппаратов – потребителей с высотами орбит свыше примерно 209 км, практически с опорной орбиты и выше вплоть до предельной для потребителя системы ГЛОНАСС высоты в 2000 км. Данная проблема была успешно решена за счёт хороших автокорреляционных свойств дальномерной М-последовательности, причём проблема поиска дополнительных несущих частот для наращивания численности группировки навигационных космических аппаратов в системе ГЛОНАСС решена не была.

Для решения указанной выше проблемы анализируется возможность отказа от многочастотного принципа построения системы ГЛОНАСС с одним дальномерным кодом для всех навигационных космических аппаратов и переход к используемому в системе GPS Navstar одночастотному принципу построения навигационной спутниковой системы с индивидуальным дальномерным кодом для каждого навигационного космического аппарата. Анализируя возможность предпочтения для использования в спутниковых навигационных системах частотного или же кодового разделения, можно обратить внимание на отсутствие в системе ГЛОНАСС классического частотного разделения. Разделение каналов в системе ГЛОНАСС происходит исключительно за счёт корреляционного приёма дальномерных сигналов. Осуществляют приём в целом шумоподобного сигнала длиной в одну миллисекунду. Ширина спектра такого сигнала на выходе корреляционного приёмника составляет ~2 кГц. При наличии допплеровского сдвига на 10-15 кГц разнесение несущих частот на 0,5 МГц делает сигналы разных навигационных космических аппаратов совершенно ортогональными, за исключением навигационных космических аппаратов – антиподов, когда разделение каналов двух навигационных космических аппаратов обеспечивается хорошими автокорреляционными свойствами дальномерной М-последовательности системы ГЛОНАСС. Эти свойства сигналов ГЛОНАСС имеют явные преимущества перед совокупностью сигналов GPS, в которой уровень межканальных помех возрастает пропорционально количеству одновременно видимых навигационных космических аппаратов.

Существующее преимущество спутниковой навигационной системы ГЛОНАСС может быть использовано для её дальнейшего совершенствования без изменения существующей структуры. Необходимо найти по меньшей мере одну M-последовательность длиной 511 единиц с такими же хорошими автокорреляционными свойствами, как у М-последовательности существующей многочастотной системы ГЛОНАСС, и с хорошими взаимокорреляционными свойствами этих М-последовательностей для их кодового разделения. Предложенные схемы формирования М-последовательностей первого (существующая M-последовательность) и второго (новая M-последовательность) видов приведены на фиг. 1. Существующий дальномерный код сигнала ГЛОНАСС средней точности используют для навигационных космических аппаратов с номерами от 1 до 24. Данный дальномерный код представляет собой М-последовательность длины 511 единиц, периода 1 мс, формируемую 9-разрядным регистром сдвига с отводной последовательностью (5, 9). Сдвиг в регистре выполняется от ячейки с меньшим номером к ячейке с большим номером. С периодичностью 1 раз в 1 мс в регистр устанавливается начальное состояние. М-последовательность снимается с последней ячейки регистра. Дополнительный дальномерный код сигнала ГЛОНАСС средней точности предлагается использовать для навигационных космических аппаратов с номерами от 25 до 48. Он отличается от существующего дальномерного кода тем, что используется другая отводная последовательность, например (2, 4, 7, 9), и другое начальное состояние.

Корреляционные свойства этих двух дальномерных кодов следующие: средний квадрат пика периодической взаимной корреляционной функции равен минус 27,08 дБ (вычислено при одном отсчете на символ дальномерного кода); максимальный квадрат пика периодической взаимной корреляционной функции равен минус 23,8 дБ; максимальный квадрат бокового пика периодической автокорреляционной функции равен минус 54,17 дБ. Полученные взаимокорреляционные свойства совпадают с известными корреляционными свойствами кодов Голда длины 511, а автокорреляционные свойства совпадают с известными свойствами M-последовательностей. Для того чтобы можно было по первым символам на периоде различить дальномерные коды, начальное состояние M-последовательности второго вида предполагается выбрать отличным от начального состояния M-последовательности первого вида. Предложенная отводная последовательность для дополнительного дальномерного кода не является единственной. Аналогичные взамокорреляционные свойства могут быть получены с использованием любой из отводных последовательностей, приведенных в таблице 1. Это позволяет для космических аппаратов – антиподов в дополнение системы ГЛОНАСС выбрать различные возможные М-последовательности с минимальными четырьмя отводами, что гарантирует надёжное разделение сигналов космических аппаратов антиподов дополнения на одной несущей частоте.

Орбитальное построение заявленной дополнительной системы аналогично исходной системе ГЛОНАСС, но с разворотом орбитальных плоскостей по долготе в промежуток между орбитальными плоскостями исходной системы ГЛОНАСС на 60º (см. фиг. 2).

Модернизированная спутниковая навигационная система ГЛОНАСС, включающая существующую группировку N1 базовых навигационных космических аппаратов спутниковой навигационной системы ГЛОНАСС, для которых используют формирование сигнала на основе M-последовательности первого вида, отличающаяся тем, что включает группировку N2 дополнительных навигационных космических аппаратов, для которых используют формирование сигнала на основе М-последовательности второго вида, где N2 дополнительных навигационных космических аппаратов представляют собой двадцать четыре навигационных космических аппарата, расположенных аналогично исходной системе ГЛОНАСС в трёх промежуточных по долготе плоскостях относительно орбитальных плоскостей исходной системы ГЛОНАСС.



 

Похожие патенты:

Изобретение относится к космическим аппаратам (КА). Изготовление модуля полезной нагрузки (МПН) КА блочно-модульного исполнения заключается в сборке МПН на технологической оснастке раздельно от модуля служебных систем (МСС).

Изобретение относится к технологии сборки космических аппаратов (КА), главным образом телекоммуникационных спутников. Способ применим к КА, состоящему из модуля полезной нагрузки (МПН) и модуля служебных систем (МСС), изготавливаемых по отдельности и объединяемых по электрическим, механическим и гидравлическим интерфейсам на заключительном этапе изготовления КА.

Изобретение относится к технологии сборки космических аппаратов (КА), главным образом телекоммуникационных спутников. Способ применим к КА, состоящему из модуля полезной нагрузки (МПН) и модуля служебных систем (МСС), изготавливаемых по отдельности и объединяемых по электрическим, механическим и гидравлическим интерфейсам на заключительном этапе изготовления КА.

Изобретение относится к способу сборки платформы космических аппаратов (КА) и может быть использовано в процессе проектирования и изготовления КА различного назначения.

Изобретение относится к космическим аппаратам (КА), создаваемым на базе CubeSat. КА содержит корпус в форме параллелепипеда, состоящий из боковых панелей (18а,…18г), закрепленных на шпангоуте (17) служебной аппаратуры в виде фрезерованной плиты.

Изобретение относится к конструкции и компоновке космических аппаратов (КА), преимущественно космических платформ (КП), объединяющих служебные подсистемы и обеспечивающих работу модуля полезной нагрузки (МПН).

Группа изобретений относится к построению и управлению космическими аппаратами на орбитах ИСЗ. Система включает в себя орбитальную станцию, целевые (ЦМ) и обеспечивающие модули на компланарных орбитах.

Группа изобретений относится к построению и управлению космическими аппаратами на орбитах ИСЗ. Система включает в себя орбитальную станцию, целевые (ЦМ) и обеспечивающие модули на компланарных орбитах.

Изобретение относится к пилотируемым космическим кораблям, предназначенным для межпланетных полетов. Межпланетный космический корабль состоит из основного и вспомогательного модулей.

Изобретение относится к конструкции и компоновке изделий космической техники или, более точно, к силовой конструкции платформы, входящей в унифицированную платформу космического аппарата, и может быть использовано при создании космических аппаратов различного назначения.

Изобретение относится к способам получения детальных изображений космического мусора и других объектов вблизи геостационарной орбиты (ГСО). Обзор производят с космического аппарата (КА) на полусуточной высокоэллиптической орбите (ВЭО) с апогеем A на 200 км ниже или на 500 км выше ГСО и перигеем до 5000 км, с наклонением от 0 до 5°. Параметры ВЭО выбираются из условия получения изображений объектов за минимальное число суток - на контролируемых участках F2F3 ГСО с рабочего участка BC ВЭО, симметричного апогею A. Перекрывающиеся участки F2F3 покрывают всю ГСО за минимальное число витков КА. По заданиям, передаваемым с наземных пунктов, могут измеряться параметры движения (в т.ч. точные угловые положения) объектов в контролируемой области со специально выбираемых участков ВЭО. КА передает изображения в период прямой видимости на наземный пункт, на котором производят вычисление параметров движения наблюдаемых объектов. Технический результат состоит в достижении беспропускного обзора ГСО за минимальное время при заданном ограничении на дальность наблюдения объектов с борта КА. 1 з.п. ф-лы, 3 ил.

Изобретение относится к способам получения детальных изображений космического мусора и других объектов вблизи геостационарной орбиты (ГСО). Обзор производят с космического аппарата (КА) на полусуточной высокоэллиптической орбите (ВЭО) с апогеем A на 200 км ниже или на 500 км выше ГСО и перигеем до 5000 км, с наклонением от 0 до 5°. Параметры ВЭО выбираются из условия получения изображений объектов за минимальное число суток - на контролируемых участках F2F3 ГСО с рабочего участка BC ВЭО, симметричного апогею A. Перекрывающиеся участки F2F3 покрывают всю ГСО за минимальное число витков КА. По заданиям, передаваемым с наземных пунктов, могут измеряться параметры движения (в т.ч. точные угловые положения) объектов в контролируемой области со специально выбираемых участков ВЭО. КА передает изображения в период прямой видимости на наземный пункт, на котором производят вычисление параметров движения наблюдаемых объектов. Технический результат состоит в достижении беспропускного обзора ГСО за минимальное время при заданном ограничении на дальность наблюдения объектов с борта КА. 1 з.п. ф-лы, 3 ил.

Изобретение относится к спутниковым системам обнаружения, наблюдения и мониторинга небесных тел Солнечной системы, угрожающих столкновением с Землей. Способ включает размещение двух космических аппаратов с телескопами Т1 (КА Т1) и Т2 (КА Т2) на орбите Земли (2) вокруг Солнца (1). Оба КА вращают с постоянной угловой скоростью вокруг их продольных осей, например, вокруг линии, соединяющей T1 и Т2. Поля зрения телескопов описывают конические поверхности. При обнаружении небесного тела (3) в поле зрения телескопа (например, КА Т2) вращение обоих КА прекращают, переводят КА Т2 в режим сопровождения, а приемники излучения - в режим кадровой регистрации сигнала, постоянно направляя поле зрения телескопа Т2 на тело (3). Поле зрение телескопа T1 второго КА T1 ориентируют на первый КА Т2 и разворачивают в плоскости T1-(3)-Т2 до появления тела (3) в поле зрения телескопа T1. Сопровождают небесное тело (3) обоими телескопами, выполняя измерения для определения параметров его орбиты. Техническим результатом являются сокращение группировки КА и повышение быстродействия системы. 3 з.п. ф-лы, 3 ил., 3 табл.
Наверх