Газоанализатор

Изобретение относится к области аналитического приборостроения и предназначено для определения концентрации азота в аргоне смеси. Газоанализатор, предназначенный для измерения концентрации азота в аргоне, содержит датчик для измерения концентрации азота в аргоне, при этом содержит устройство для измерения концентрации кислорода, в котором под воздействием источника постоянного напряжения удаляется кислород из азотно-аргоновой смеси, последовательно соединенное с датчиком для измерения концентрации азота в аргоне. Технический результат – снижение нижнего предела измерений концентрации азота в аргоне до 0,2⋅10-4%. 1 ил.

 

Предлагаемое изобретение относится к области аналитического приборостроения и предназначено для определения концентрации азота в аргоне смеси.

Известно изобретение «Спектральный способ оперативного определения малых концентраций азота и кислорода в газовых смесях с гелием и устройство его осуществления» (Патент на изобретение RU №2232982 МПК G01N 27/62, G01N 21/62, опубл. 20.07.2004). Техническим результатом является обеспечение одновременного измерения малых концентраций азота (20…500 ppm) и кислорода (5…50 ppm) в газовых смесях с гелием 0,2…2,0 атм.

Недостатком этого способа определения малых концентраций азота и кислорода в газовых смесях с гелием является то, что концентрации азота и кислорода вычисляют по формулам, в которые входят коэффициенты, определяемые по калибровочным кривым для данного давления. Определение данных коэффициентов является сложной задачей, об этом говорят их экспериментальные данные, которые имеют большой разброс по погрешностям, также газовая камера не термостабилизирует поток анализируемого газа, что дает дополнительную погрешность измерения концентрации азота и кислорода в зависимости от температуры окружающей среды.

Известна полезная модель «Датчик для измерения концентрации азота в аргоне» (Патент на полезную модель RU №57010 МПК G01N 21/67, опубл. 27.09.2006), в которой для измерения концентрации азота в аргоне используется разряд в термостатируемом потоке анализируемого газа при атмосферном давлении с применением внешнего источника возбуждения высоковольтными импульсами напряжения. Датчик обеспечивает измерение концентрации азота в аргоне в диапазоне от 2⋅10-4 до 1⋅10-2% (2…1000 ppm).

Недостатком данного датчика является невозможность уменьшить нижний предел измерений концентрации азота в аргоне, так как в аргоне всех марок, выпускаемых по ГОСТ 10157-79, есть кислород. Наличие кислорода в аргоне уменьшает интенсивность люминесценции азота.

Для удаления кислорода из азотно-аргоновой смеси используется полезная модель «Устройство для измерения концентрации кислорода» (Патент на полезную модель RU №63534 МПК G01N 15/00, опубл. 27.05.2007). Устройство содержит нагреватель, термопару, пробирку из твердого электролита, обладающую при температуре от 950 до 1100 К кислородной проводимостью, и при подключении к электродам, нанесенным на внутреннюю и внешнюю часть пробирки, источника постоянного напряжения, кислород переносится из анализируемого газа в окружающий атмосферный воздух.

Техническим результатом предлагаемого решения является уменьшение нижнего предела измерения концентрации азота в аргоне.

Газоанализатор (см.чертеж) представляет из себя последовательно соединенные друг с другом следующие устройства: «Устройство для измерения концентрации кислорода» (1) с источником постоянного напряжения (2) и «Датчика для измерения концентрации азота в аргоне» (3) с импульсным источником высокого напряжения (4).

Газоанализатор работает следующим образом. Азотно-аргоновая смесь поступает на штуцер ВХОД ГАЗА «Устройства для измерения концентрации кислорода», в котором под воздействием источника постоянного напряжения удаляется кислород из азотно-аргоновой смеси, далее очищенная от кислорода азотно-аргоновая смесь поступает в «Датчик для измерения концентрации азота в аргоне», где под воздействием импульсного высокого напряжения возникает электрический разряд в анализируемом газе, который через штуцер ВЫХОД ГАЗА свободно сбрасывается в окружающую атмосферу. Ввиду отсутствия кислорода в азотно-аргоновой смеси интенсивность излучения молекулярной полосы азота, возбуждаемого электрическим разрядом, будет выше, что позволяет уменьшить нижний предел измерения до 0,2⋅10-4%.

Газоанализатор, предназначенный для измерения концентрации азота в аргоне, содержащий датчик для измерения концентрации азота в аргоне, отличающийся тем, что содержит устройство для измерения концентрации кислорода, в котором под воздействием источника постоянного напряжения удаляется кислород из азотно-аргоновой смеси, последовательно соединенное с датчиком для измерения концентрации азота в аргоне.



 

Похожие патенты:

Изобретение относится к области диагностики и контроля качества жидкостей. Способ определения примесей в жидких средах основан на сравнении спекл-изображений, полученных после прохождения лазерного пучка через пробу контролируемой жидкости, которая была выдержана некоторое время до полного оседания примесей, и через пробу контролируемой жидкости, находящуюся в возбужденном состоянии.

Изобретение относится к нагревательному устройству для прибора для измерения методом спектрометрии. Данное нагревательное устройство отличается тем, что оно выполнено в виде мягкого оптического элемента (1), который включает в себя мягкую гибкую опору (10) с верхней стороной (10a) и нижней стороной (10b).

Изобретение относится к неразрушающим способам обнаружения дефектов изделий, выполненных по аддитивной технологии из неметаллических материалов, прозрачных для электромагнитных волн с длинами 10-4 до 10-3 метра, и может быть использовано для автоматического обнаружения скрытых дефектов структуры.

Изобретение относится к области биотехнологии и предназначено для определения индекса фрагментации ДНК сперматозоидов у животных-производителей. Осуществляют подготовку мазка спермопробы к окрашиванию и приготовление красителя смешиванием раствора лимонной кислоты, гидрофосфата натрия и 1%-го акридин оранжевого.

Изобретение относится к области геологии. Заявленное решение включает выполнение проверочного испытания на устройстве с использованием ряда эталонных флюидов, при этом устройство имеет калиброванный оптический датчик, установленный в нем, который содержит один или более оптических элементов.

Изобретение относится к нефелометрам. Устройство для оптического исследования образца, содержит: оптический источник оптического сигнала, по меньшей мере один первый детектор для получения оптического сигнала, пропущенного непосредственно через кювету, расположенную в устройстве, выполненном с возможностью размещения в нем кюветы с суженной нижней частью и широкой верхней частью, причем периметр широкой верхней части больше периметра нижней суженной части; и второй детектор для получения оптического сигнала от оптического источника, рассеянного содержимым в нижней части кюветы, причем поверхность второго детектора проходит приблизительно параллельно оптическому пути, проходящему от оптического источника к первому детектору.
Изобретение относится к области создания визуальных эффектов. Способ создания стабильного и долговременного художественного визуального эффекта диффузного свечения поверхности художественно-архитектурного объекта под воздействием внешнего возбуждающего УФ-А (365-385 нм) и/или ИК-А (760-1000 нм) излучения включает нанесение нескольких оптически прозрачных полимерных слоев, в состав прилегающего к поверхности слоя/слоев входят оптически прозрачная полимерная основа, содержащая органические и/или неорганические люминофор/люминофоры, имеющие флуоресценцию с положительным сдвигом Стокса, до 100 нм, и/или с аномально большим сдвигом Стокса, свыше 100 нм, и/или люминофоры, имеющие антистоксовую флуоресценцию, т.е.

Изобретение относится к способам анализа элементного состава веществ. Способ определения элементного состава капельных жидкостей включает: возбуждение плазменного разряда, доставку в зону разряда частиц анализируемой жидкости, регистрацию и обработку спектров излучения анализируемой жидкости, причем возбуждение плазменного разряда проводят при атмосферном давлении, основными носителями заряда в плазме являются электроны, генерируемые катодом плазменной горелки или каким-либо другим источником заряженных элементарных частиц.

Изобретение относится к технологиям визуально-измерительного контроля (ВИК), позволяющим по зарегистрированным изображениям обнаружить искомые элементы поверхности контролируемых объектов в труднодоступных внутренних полостях различных технических устройств и сооружений и измерить геометрические характеристики этих элементов.

Способ заключается в том, что объект освещают широкополосным светом, формируют пучок излучения, переносящий изображение объекта, делят его на два идентичных пучка, один из которых пространственно фильтруют, формируя волну с известной формой волнового фронта, совмещают направления распространения волновых фронтов, осуществляют спектральную фильтрацию этих пучков и регистрируют двумерное спектральное интерференционное изображение.

Изобретение относится к способам определения местоположения единичных молекул вещества в образце. Единичные молекулы вещества находятся во флуоресцентном состоянии, в котором их можно возбуждать светом возбуждения для испускания света флуоресценции. Расстояние между единичными молекулами вещества в интересующей области образца поддерживается на минимальном значении d=, где λ - длина волны света возбуждения, n - показатель преломления оптического материала, α - половинный угол раствора оптической системы, которая направляет свет возбуждения на образец, I - максимальная интенсивность света возбуждения в образце, Is - зависящая от вещества интенсивность света возбуждения при насыщении флуоресценции. Единичные молекулы вещества возбуждают светом возбуждения для испускания света флуоресценции. Распределение интенсивности света возбуждения содержит по меньшей мере одну нулевую точку. Свет флуоресценции возбужденных единичных молекул вещества регистрируют в различных позициях (xN) по меньшей мере одной нулевой точки распределения интенсивности света возбуждения в интересующей области образца. Расстояния между ближайшими соседними позициями (xN) по меньшей мере одной нулевой точки распределения интенсивности света возбуждения, в которых регистрируют свет флуоресценции возбужденных единичных молекул вещества, составляет не более половины минимального значения d. Местоположения (xM) единичных молекул вещества выводят из кривой зависимости интенсивности (I) света флуоресценции соответствующей молекулы от позиций (xN) по меньшей мере одной нулевой точки распределения интенсивности света возбуждения в интересующей области образца. 2 н. и 23 з.п. ф-лы, 11 ил.

Группа изобретений относится к очистке сточных вод. Способ определения мутности жидкой фазы многофазных сточных вод включает: размещение датчика мутности, состоящего из корпуса, содержащего излучатель света и светочувствительный датчик, в многофазной сточной воде. Излучение светового сигнала и прием светочувствительным датчиком этого светового сигнала, отображающего количество света, рассеиваемого или пропускаемого сточными водами. Осуществление выборки сигнала для получения множества выборочных значений сигнала от жидкой фазы сточных вод при отсутствии флокулированных частиц, получая один набор выборочных значений, и когда флокулированные частицы находятся на траектории сигнала, получая второй набор выборочных значений. Сравнение выборочных значений с порогом, основанным на плотности распределения вероятностей, полученного из набора выборочных значений. Установление указанного порога, так что по меньшей мере часть выборочных значений лежит ниже него. Идентификацию выборочных значений, находящихся ниже порога, и определение мутности жидкой фазы сточных вод на основании идентифицированных выборочных значений. Технический результат заключается в повышении точности определения мутности сточных вод и регулировки количества коагулянта. 2 н. и 13 з.п. ф-лы, 9 ил.

Изобретение относится к области измерительной техники и может быть использовано для контроля экологического обустройства окружающей среды. Изобретение представляет собой портативный респирометрический прибор с автономным питанием, рассчитанный на оперативный контроль дыхательной эмиссии СО2 непосредственно по месту проведения почвенного мониторинга различных природно-хозяйственных объектов. Предложен портативный почвенный респирометр для мониторинга эмиссии СO2 в атмосферу, который представляет собой устройство, состоящее из двух функционально связанных между собой элементов: герметичной камеры в форме колпака с одной открытой стороной, накрывающего выбранный для контроля участок поля, посева, и портативного автоматического ИК-газоанализатора СO2. По дополнительному предназначению для контроля отобранных почвенных образцов, кернов открытая стороны камеры дополнительно оборудуется съемной крышкой, герметически закрывающей камеру через типовой уплотнитель с помощью типового замка, а внутри камеры размещается лоток, одна открытая сторона которого полностью укрывается в виде воздушного фильтра типовым воздухопроницаемым материалом. Технический результат - универсальность, предполагающая возможность почвенного мониторинга либо с помощью учетных площадок, либо с помощью специально отобранных почвенных проб, кернов. 1 з.п. ф-лы, 3 ил., 1 табл.
Наверх