Средство на основе биологически активных соединений морских гидробионтов, обладающее канцерпревентивным действием и повышающее терапевтическую активность противоопухолевых антибиотиков



Средство на основе биологически активных соединений морских гидробионтов, обладающее канцерпревентивным действием и повышающее терапевтическую активность противоопухолевых антибиотиков
Средство на основе биологически активных соединений морских гидробионтов, обладающее канцерпревентивным действием и повышающее терапевтическую активность противоопухолевых антибиотиков
Средство на основе биологически активных соединений морских гидробионтов, обладающее канцерпревентивным действием и повышающее терапевтическую активность противоопухолевых антибиотиков
Средство на основе биологически активных соединений морских гидробионтов, обладающее канцерпревентивным действием и повышающее терапевтическую активность противоопухолевых антибиотиков
Средство на основе биологически активных соединений морских гидробионтов, обладающее канцерпревентивным действием и повышающее терапевтическую активность противоопухолевых антибиотиков
Средство на основе биологически активных соединений морских гидробионтов, обладающее канцерпревентивным действием и повышающее терапевтическую активность противоопухолевых антибиотиков
Средство на основе биологически активных соединений морских гидробионтов, обладающее канцерпревентивным действием и повышающее терапевтическую активность противоопухолевых антибиотиков

Владельцы патента RU 2659682:

Федеральное государственное бюджетное учреждение науки Тихоокеанский институт биоорганической химии им. Г.Б. Елякова Дальневосточного отделения Российской академии наук (ТИБОХ ДВО РАН) (RU)

Изобретение относится к фармацевтической промышленности, а именно к средству на основе биологически активных соединений морских гидробионтов, обладающему канцерпревентивным действием и повышающему терапевтическую активность противоопухолевых антибиотиков. Средство, обладающее канцерпревентивным действием и повышающее терапевтическую активность противоопухолевых антибиотиков, представляет собой лецитиновую эмульсию, содержащую каротиноидный комплекс из бурых водорослей Laminaria japonica, Fucus evanescens, F. vesiculosus, включающий фукоксантин, каротиноидный комплекс из морской звезды Patiria pectinifera, включающий астаксантин, лютеин и зеаксантин; концентрат спиртового экстракта плоских морских ежей Scaphechinus mirabilis, включающий эхинохром А, взятые в определенном соотношении. Вышеописанное средство обладает выраженным канцерпревентивным действием, способно усиливать противоопухолевое действие используемых в онкотерапии известных антибиотиков, таких как доксорубицин, при их совместном применении, а также расширяет арсенал подобных средств. 6 ил., 3 табл., 4 пр.

 

Изобретение относится к фармацевтической промышленности, а именно к средству на основе биологически активных соединений морских гидробионтов, обладающему канцерпревентивным действием и повышающему химиотерапевтическую активность противоопухолевых антибиотиков.

Известны онкопрофилактические средства из водорослей, такие как «Кламин», содержащее концентрат ламинарии омыленный [RU 2034560 С1, 10.05.1995], «Фитолон» и «Фитолон-М», содержащие этиловый спирт, медные производные хлорофилла, пищевой ароматизатор и воду [RU 2031654 С1, 27.03.1995], «Фукус» содержащий экстракт фукусный, полученный из фукуса пузырчатого [RU 2116798 С1, 10.08.1998].

Однако ни одно из известных средств не проявляет усиленного канцерпревентивного действия.

В качестве прототипа выбрано противоопухолевое средство для профилактики и лечения рака печени, включающее фукоксантин из бурых водорослей Undaria pinnatifida, полученное путем экстракции, сухих водорослей, очистки и последующего выделения, в комплексе с другими фармацевтическими ингредиентами [JPH 10158156 А, 16.06.1987].

Однако это средство не обладает свойством повышать терапевтическую активность противоопухолевых антибиотиков.

Задача, решаемая изобретением, расширение арсенала средств на основе биологически активных соединений морских гидробионтов, обладающих канцерпревентивным действием и повышающих терапевтическую активность противоопухолевых антибиотиков.

Поставленная задача решается новым средством на основе биологически активных соединений морских гидробионтов, обладающим канцерпревентивным действием и повышающим терапевтическую активность противоопухолевых антибиотиков, представляющее собой лецитиновую эмульсию, содержащую каротиноидный комплекс из бурых водорослей Laminaria japonica, Fucus evanescens, F. vesiculosus, включающий фукоксантин; каротиноидный комплекс из морской звезды Patiria pectinifera, включающий астаксантин, лютеин и зеаксантин; концентрат спиртового экстракта плоских морских ежей Scaphechinus mirabilis, включающий эхинохром А, с содержанием биологически активных соединений, мас.%:

фукоксантин 1,0-1,5
астаксантин 1,0-1,5
лютеин 0,3-0,4
зеаксантин 0,2-0,4
эхинохром А 0,7-1,0

Из уровня техники не известно средство заявленного состава, обладающее канцерпревентивным действием, которое позволяет усилить канцерпревентивный эффект на модели кожного канцерогенеза in vivo. Кроме того, заявляемое средство повышает противоопухолевое действие используемых в химиотерапии известных противоопухолевых антибиотиков, таких как доксорубицин, при их совместном применении.

Заявляемое средство оказывает значительное модулирующее влияние на иммунологические процессы в организме таким способом, что стимулирует его онкопротекторные свойства; приводит к коррекции морфологических и биохимических параметров в сторону их нормализации при развитии кожного канцерогенеза; способствует снижению частоты появления новых опухолевых очагов, интенсивности роста, количества и размера опухолей у животных; улучшает клиническую картину проявления онкопатологии, увеличивая латентный период опухолевого роста.

Изобретение обеспечивает расширение арсенала средств на основе биологически активных соединений морских гидробионтов, обладающих канцерпревентивным действием и повышающих терапевтическую эффективность противоопухолевых антибиотиков.

Бурые морские водоросли Laminaria japonica, Fucus evanescens, F. vesicujosus служат богатым природным источником каротиноидов. Основная функция каротиноидов обусловлена их превращением в витамин А, который принимает активное участие в процессах внутриклеточного метаболизма, фоторецепции, регуляции пролиферации и дифференцировки. Помимо этого, каротиноиды являются фотопротекторами и антиоксидантами. Они поддерживают стабильность генома и резистентность организма к мутагенезу и канцерогенезу, проявляют адаптационно-приспособительные и антистрессорные свойства.

Фукоксантин - оксигенированный каротиноид, содержащийся преимущественно в бурых водорослях и составляющий более 10% всех природных каротиноидов. Содержание фукоксантина относительно общего количества каротиноидов в бурых водорослях составляет 51-73% для фукусовых и 78-83% для ламинариевых.

В организме фукоксантин, так же, как и его метаболиты, обладает целым рядом биологических активностей. Фукоксантин эффективен при кардиоваскулярных нарушениях, метаболическом синдроме, обладает антиоксидантными, фотопротекторными свойствами, противоопухолевой активностью [Orazio N.D., et al. // Маr. Drugs. 2012. V. 10. P. 604-616; Попов А.М. и др. // Биофармацевтический журнал. 2013. Т. 5. С. 13-30; US 2015065568 А1, 05.03.2015], оказывает противоспалительное действие [KR 20150075514 А, 06.07.2015; US 2015065568 А1, 05.03.2015].

Среди оксигенированных каротиноидов особое место занимает астаксантин. Он является сильным природным антиоксидантом. Природным источником астаксантина являются микроводоросли Haematococcus. Ракообразные и другие морские гидробионты аккумулируют астаксантин в процессе питания. Астаксантин обладает солнцезащитными, противовоспалительными свойствами, проявляет иммуномодулирующую активность, ингибирует развитие некоторых опухолей [Попов A.M. и др. // Биофармацевтический журнал. 2013. Т. 5. С. 13-30], проявляет нейропротекторные [RU 2569743 С2, 20.10.2013] и кардиопротекторные свойства [RU 2603583 С2, 27.06.2016].

Другим распространенным каротиноидом является лютеин, который широко применяют в синергических комбинациях в качестве активного ингредиента в терапевтической противовоспалительной композиции с полифенолами и в сочетании с ликопеном в композиции для лечения гипертонии [RU 2563991 С2, 27.09.2015, RU 2459617 С2, 27.08.2012].

Еще одним широко применяемым каротиноидом является зеаксантин. Его применяют в качестве антиоксиданта [ЕР 1806411 А1, 11.07.2007], в составе пищевой добавки для лечения дегенерации желтого пятна сетчатки глаза [RU 2197958 С2, 10.02.2003]. Лютеин и зеаксантин нашли комплексное применение в составе специализированного липидного модуля, предназначенного для регулирования уровня липидов в крови, снижения риска развития атеросклероза и сердечно-сосудистых заболеваний [RU 2603583 С2, 27.06.2016], в составе антиоксидантного комплекса [RU2261631 С1, 10.10.2006], и при лечении возрастных дегенеративных патологий [GB 2503608 А, 01.01.2014].

Известен и широко применяется природный антиоксидант - эхинохром А - полигидроксинафтохинон из морских ежей вида Scaphechinus mirabilis [RU 2283298 C1, 10.09.2006]. Препараты на основе эхинохрома А применяют для лечения острого инфаркта миокарда, ишемической болезни сердца, а также для лечения воспалительных заболеваний сетчатки и роговицы глаз. Экстракт морских ежей, содержащий эхинохром А, входит в состав биологически активных добавок «Тимарин» и «Хитохром С», предназначеных для профилактики атеросклероза, коронарной болезни сердца, улучшения липидного статуса крови, обеспечения антиоксидантной защиты организма [RU 2340216 С1, 10.12.2008, RU 2360683 С1, 10.07.2009].

Раннее авторами было отмечено, что эхинохром А является стабилизатором жиров и масел к окислению, участвует в предотвращении перекисного окисления липидов и жирных кислот [RU 2340216 С1, 10.12.2008].

Поскольку каротиноиды по своей природе являются нестойкими соединениями и могут быстро разлагаться под воздействием экзогенных факторов - солнечного света, кислорода воздуха, высоких температур, то эхинохром А в заявляемом средстве дополнительно используется и в качестве стабилизатора липидных составляющих.

Для получения заявляемого средства необходимо приготовить исходные компоненты.

Приготовление исходных компонентов.

Получение каротиноидов из бурых водорослей.

Водоросли видов Laminaria japonica, Fucus evanescens, F. vesiculosus свежевыловленные, замороженные или высушенные, промывают питьевой водой для удаления морских солей и посторонних примесей. Воду сливают, сырье подсушивают на воздухе, измельчают и гомогенизируют. Гомогенат экстрагируют 96% этиловым спиртом при соотношении сырье : экстрагент 1:3→1:5 при комнатной температуре в течение суток. Экстракт отделяют фильтрованием или центрифугированием, разбавляют дистиллированной водой до 20-30% содержания этилового спирта и хроматографируют на ионообменном сорбенте (DEAE, ТЕАЕ, NН2-целлюлозе), уравновешенном 25% этиловым спиртом.

Фракцию, содержащую каротиноиды, элюируют градиентом этилового спирта 40→60%. Спирт отгоняют, а водный концентрат хроматографируют на гидрофобном сорбенте полихром-1, уравновешенном водой. Каротиноидный комплекс, содержащий фукоксантин, элюируют 96% этиловым спиртом. Спирт отгоняют. Полученный целевой продукт представляет собой маслянистый препарат, содержащий 80-85% фукоксантина.

На фиг. 1 представлены спектры поглощения спиртовых растворов фукоксантина с чистотой не менее 95% фирмы «Sigma» (1a) и полученного вышеописанным способом фукоксантина (1b). В спектрах присутствует полоса поглощения около 448 нм, характерная для фукоксантина.

Получение каротиноидного комплекса из морской звезды Patiria pectinifera.

Каротиноидный комплекс из морской звезды Patiria pectinifera получают согласно процедуре, описанной заявителем в патенте [RU 2469732 С1, 20.12.2012]. Целевой продукт содержит 30-50% астаксантина. Кроме того, в комплексе определено наличие лютеина в количестве 3-5% и зеаксантина в количестве 2-4%.

На фиг. 2 представлена ВЭЖ хроматограмма каротиноидного комплекса из морской звезды Patiria pectinifera (А), содержащего астаксантин в качестве основного компонента (1), зеаксантин (2), лютеин (3) и образца астаксантина фипмы «Sigma» (В). По оси X - время удерживания вещества, мин; Y - интенсивность поглощения (А) при 475 нм.

Получение экстракта морских ежей.

Концентрат экстракта морских ежей Scaphechinus mirabilis, содержащий эхинохром А, получают согласно процедуре, описанной заявителем в патенте [RU 2340216 С1, 10.12.2008]. Полученный концентрат упаривают в вакууме до полного удаления спирта и воды. Целевой продукт содержит 10-20% эхинохрома А.

Способ получение заявляемого средства.

Для получения заявляемого средства каждый полученный ингредиент необходимо перевести в растворимое состояние. В качестве растворителя используют лецитин, относящийся к эссенциальным фосфолипидам, и широко используемый в составе лекарственных препаратов, биологически активных добавок к пище, в пищевой промышленности.

Готовят растворимые формы каждого активного ингредиента в лецитине в концентрации от 20 до 45 мг/мл. Затем полученные лецитиновые эмульсии, взятые в равных массовых долях, объединяют и перемешивают в закрытой емкости с мешалкой или гомогенизаторе при комнатной температуре до получения однородного препарата, который содержит 1,0-1,5% фукоксантина, 1,0-1,5% астаксантина, 0,3-0,4% лютеина, 0,2-0,4% зеаксантина, 0,7-1,0% эхинохром А.

Готовый продукт капсулируют в желатиновые капсулы, исходя из рекомендуемой суточной дозы 4-6 мг активных компонентов на прием.

Состав продукта подтвержден методом ВЭЖХ.

На фиг. 3 представлена ВЭЖ хроматограмма заявляемого средства, содержащего эхинохром (1), фукоксантин (2), астаксантин (3), зеаксантин (4) и лютеин (5). По оси X - время удерживания вещества, мин; Y - интенсивность поглощения (А) при 475 нм.

Экспериментально установлено, что заявляемое средство обладает высокой биологической активностью, а именно: в результате его применения наблюдается выраженная нормализация патологических процессов, индуцированных введением канцерогенного агента - 7,12-диметил-5,6-бензантрацен (ДМБА) при экспериментальном моделировании кожного канцерогенеза. Канцерпревентивное действие заявляемого средства сравнимо с активностью розмариновой кислоты (РК), взятой в качестве вещества сравнения на данной модели [Sharmila R., Manoharan S. // Indian J. Exp.Biol. 2012. V. 50(3). P. 187-194].

При экспериментальном моделировании асцитного варианта аденокарциномы Эрлиха установлено, что применение заявляемого средства совместно с противоопухолевым антибиотиком доксорубицином, увеличивает противоопухолевый эффект доксорубицина, повышая продолжительность жизни экспериментальных животных.

Изобретение иллюстрируется следующими примерами конкретного выполнения.

Пример 1. Токсикологические исследования.

Опыты по определению острой токсичности исследуемого средства и расчет LD50 проводили по методу Кербера. Лабораторные животные были рандомно разделены на 4 группы: 1-250 мг/кг, 2-125 мг/кг, 3-50 мг/кг, 4-25 мг/кг, по пять мышей в каждой. Средство, в указанных дозах, вводили животным однократно внутрижелудочно в виде водной суспензии в объеме 0,2 мл. После введения исследуемого средства за каждым животным велось наблюдение через 1, 2, 6, 24 часа и далее ежедневно, в общей сложности на протяжении 10 дней. В ходе наблюдения учитывали изменение поведенческих реакций, внешнего вида, состояния шерстяного покрова, частоты дыхания, аппетита, моторики. После окончания эксперимента все животные подвергались общему вскрытию с дальнейшей визуальной оценкой патологических изменений внутренних органов.

В данном опыте ни в одной группе не было зафиксированно гибели животных, из за чего не представлялось возможным рассчитать ЛД50. Результаты представлены в таблице 1.

Также в период наблюдения не было отмечено никаких объективных признаков острой интоксикации.

Результаты проведенных работ и подробного клинического осмотра экспериментальных животных говорят об отсутствии у заявляемого средства токсических для организма свойств.

Пример 2. Фармакологические исследования канцерпревентивной активности заявляемого средства на модели кожного канцерогенеза.

Для оценки канцерпревентивной активности заявляемого средства в качестве экспериментальной модели был использован метод химического канцерогенеза, индуцируемого у животных сильным канцерогенным веществом ДМБА, согласно [Farnoush A., Mackenzie I.С.// J. Oral Pathology & Medicine. 1983. V. 12. P. 300-306].

Исследования проводили на мышах-самках линии CD-1. Животные были подразделены на четыре группы по 10-12 голов в каждой: К(И) - интактные, К(-) - канцерогенные (отрицательный контроль), С - канцерогенные, получавшие заявляемое средство, РК - канцерогенные, получавшие розмариновую кислоту (положительный контроль). ДМБА использовали в дозе 10 мкг на мышь. Исследуемые препараты вводили перорально в дозе 10 мг/кг в объеме 0,2 мл одновременно с аппликацией канцерогена.

Морфологические исследования канцерпревентивной активности на экспериментальной модели кожного канцерогенеза, индуцированного ДМБА.

При моделировании in vivo кожного канцерогенеза после появления первых папиллом еженедельно оценивали следующие параметры: количество животных с опухолью, количество папиллом в каждой группе, размер папиллом и латентный период (период между появлением первых признаков развития опухоли до появления 50% животных с опухолью в группе), который рассчитывали по формуле

ЛП=∑FX/N,

где F - количество опухолей, появившихся за неделю;

X - количество недель, на момент учета;

N - суммарное количество опухолей.

Полученные результаты представлены в таблице 2.

Примечание: морфологические показатели в исследованных экспериментальных группах зафиксированы на 15 неделе эксперимента.

На фиг. 4 представлены данные по изменению количества животных с опухолью (4А) и размеры опухоли у экспериментальных животных (4 В) с момента появления первых изменений на участке кожи животных, подвергнутой обработке ДМБА (спустя 5 недель после первой аппликации канцерогена). Исследованные группы: К(-) -отрицательный контроль, РК - розмариновая кислота, С - заявляемое средство.

При моделировании in vivo кожного канцерогенеза было показано, что профилактическое применение заявляемого средства способствовало снижению интенсивности развития патологических процессов, индуцированных аппликацией ДМБА на кожу экспериментальных животных. Установлено, что первые полноценные опухолевые очаги были зафиксированы через 7 недель после первой аппликации канцерогена: в группе К(-) у 30% животных, а в группах, прошедших курс лечения розмариновой кислотой РК и заявляемым средством, только у 20% (фиг. 4А). Следует отметить, что если в группе К(-) на 8 неделе эксперимента количество мышей с размером папиллом около 3 мм достигло 50%, то в опытных группах количество животных с опухолью достигло 50% только к 10 неделе эксперимента, а размер папиллом не превышал 2,5 мм (фиг. 4В).

До 13 недели количество животных с опухолью продолжало интенсивно увеличиваться, достигая в группе К(-) - 100%, а в группах РК и С - 60% (фиг. 4А). К данному сроку в группе К(-) размеры папиллом составляли в среднем 4 мм, а в группах РК и С - менее 3 мм (фиг. 4 В). Установлено, что в группе, прошедшей профилактическое лечение заявляемым средством, к 11 неделе образование новых опухолевых очагов практически полностью прекращалось.

Таким образом, в группах экспериментальный животных, прошедших курс лечения заявляемым средством и розмариновой кислотой, наблюдался выраженный канцерпревентивный эффект. Применение заявляемого средства замедляет частоту появления новых опухолевых очагов и интенсивность роста новообразований. Как видно из данных, приведенных в таблице 2, в группе животных, пролеченных заявляемым средством, количество и размер папиллом были более чем в 1,5 раза ниже, чем в группе К(-). Более того, лечение данным препаратом способствовало небольшому увеличению латентного периода опухолевого роста.

Пример 3. Биохимические исследования канцерпревентивной активности на экспериментальной модели кожного канцерогенеза, индуцированного ДМБА.

Опухолевый рост приводит к угнетению иммунной системы вследствие онкозависимой иммунносупрессии на стадии прогрессивного роста опухоли, что затрудняет противоопухолевый иммунный ответ со стороны защитных систем организма [Talero Е., Garcia-Maurino S., Avila-Roman J., et al. // Mar. Drugs. 2015. V. 13. P. 6152-6209].

Для оценки функционального состояния иммунной системы в каждой группе экспериментальных животных проводили анализ продукции провоспалительных и противовоспалительных цитокинов в сыворотке крови и гомогенате кожи методом иммуноферментного анализа сэндвич-типа с помощью диагностических наборов BD Bioscience OptEIA US..

На фиг. 5 приведены данные по определению уровня провоспалительных цитокинов: ИЛ-1 - интерлейкин-1, ИЛ-17 - интерлейкин-17, ИФН-γ - интерферон-гамма, ФНО-α - фактор некроза опухоли и противовоспалительных цитокинов: ИЛ-4 -интерлейкин-4, ИЛ-10 - интерлейкин-10, в гомогенате кожи (5А) и сыворотке крови (5В) животных, при экспериментальном моделировании кожного канцерогенеза. По оси ординат обозначена концентрация цитокинов в 1 мл биообразца. К - интактный контроль; К(-) - отрицательный контроль, РК - розмариновая кислота, С - заявляемое средство.

Забор образцов тканей для биохимических исследований проводили на 15 неделе эксперимента.

Сравнительный анализ уровня цитокинов в сыворотке крови и гомогенатах кожи показал, что в группе К(-) в гомогенатах кожи, обработанной канцерогеном, наблюдалось существенное снижение уровня как провоспалительных, так и противовоспалительных цитокинов по сравнению с интактными животными. Однако в сыворотке крови мышей изменение уровня исследуемых цитокинов было незначительным.

Прием заявляемого средства, так же как и РК, значительно повышало уровень всех исследуемых цитокинов в гомогенатах кожи экспериментальных животных по сравнению с группой К(-), за исключением ИЛ-4. Полученные данные свидетельствуют о способности препарата модулировать иммунологические реакции при поражениях кожи, вызванных ДМБА.

Липидная пероксидация в результате окислительного стресса вовлечена во все стадии роста и развития опухоли. Состояние антиоксидантной системы защиты у экспериментальных животных определяли по накоплению вторичных продуктов перекисного окисления липидов (ПОЛ), реагирующих с тиобарбитуровой кислотой (ТБК-активные продукты), количество которых выражали в виде концентрации малонового деальдегида (МДА) на единицу веса белка [Медицинские лабораторные технологии: Справочник/ Под ред. Карпищенко А.И. СПб.: Интермедика, 1999].

На фиг. 6 представлены данные по содержанию МДА (ось ординат) в сыворотке крови животных, при экспериментальном моделировании кожного канцерогенеза. К (интактный) - интактный контроль, К(-) - отрицательный контроль, РК - розмариновая кислота, С - заявляемое средство.

Анализ данных по содержанию МДА в сыворотке крови животных показал, что в группе К(-) уровень МДА возрастает примерно в 1,5 раза по сравнению с группой интактных животных. В группе, прошедшей курс лечения заявляемым средством, наблюдается снижение данного биохимического показателя до нормальных значений.

Таким образом, можно заключить, что заявляемое средство обладает выраженным защитным действием при экспериментальном кожном канцерогенезе, вызванном ДМБА.

Пример 4. Оценка сочетанной противоопухолевой активности заявляемого средства с доксорубицином.

Противоопухолевую активность заявляемого средства при его сочетанной терапии с известным противоопухолевым препаратом доксорубицином исследовали на экспериментальной моделе асцитного варианта аденокарциномы Эрлиха по продолжительности жизни лабораторных животных разных экспериментальных групп: К(-) - отрицательный контроль; С - заявляемое средство; ДР - доксорубицин; ДР + С - доксорубицин, применяемый совместно с заявляемым средством.

Для инокуляции опухоли внутрибрюшинно вводили по 3 млн. клеток на мышь. Доксорубицин вводили в дозе 0,25 мг/кг внутрибрюшинно, а заявляемое средство использовали в дозе 10 мг/кг в водном растворе перорально. Курс лечения препаратами составлял пять дней. Спустя неделю после курса лечения препаратами, вели еженедельное наблюдение за экспериментальными животными в течение 70 суток. По окончании периода наблюдения производили расчет средней продолжительности жизни и выживаемости (количество выживших животных) каждой группы животных.

В результате исследования было показано, что лечение ДР повышало среднюю продолжительность жизни мышей опухоленосителей примерно в 3 раза относительно группы К(-). Заявляемое средство самостоятельно не проявляет заметного противоопухолевого действия и не влияет на рост опухоли. Однако применение ДР в сочетании с заявляемым средством усиливало противоопухолевое действие препарата, увеличивая среднюю продолжительность жизни экспериментальных животных относительно группы животных, проходивших монотерапию ДР. Кроме того, по истечении 70 суток было зафиксировано, что в группе ДР + С выживаемость животных была в 1,5 раза больше, чем в группе ДР. Полученные результаты представлены в таблице 3.

Таким образом, заявляемое средство является перспективным дополнительным средством для лечения онкологических заболеваний при его комбинированной терапии с известными противоопухолевыми антибиотиками, такими, как доксорубицин.

Средство на основе биологически активных соединений морских гидробионтов, обладающее канцерпревентивным действием и повышающее терапевтическую активность противоопухолевых антибиотиков, представляющее собой лецитиновую эмульсию, содержащую каротиноидный комплекс из бурых водорослей Laminaria japonica, Fucus evanescens, F. vesiculosus, включающий фукоксантин; каротиноидный комплекс из морской звезды Patiria pectinifera, включающий астаксантин, лютеин и зеаксантин; концентрат спиртового экстракта плоских морских ежей Scaphechinus mirabilis, включающий эхинохром А, с содержанием биологически активных соединений, мас.%:

фукоксантин 1,0-1,5
астаксантин 1,0-1,5
лютеин 0,3-0,4
зеаксантин 0,2-0,4
эхинохром А 0,7-1,0



 

Похожие патенты:

Изобретение относится к медицине, а именно к онкологии, и может быть использовано при лечении B-клеточных злокачественных заболеваний или T-клеточных злокачественных заболеваний.

Изобретение относится к способу получению лиофилизата бортезомиба (субстанции бортезомиба). Лиофилизат бортезомиба получают последовательным получением сначала водного раствора маннита с концентрацией его в растворе 10-20 мг/мл; затем получением водного раствора бортезомиба в полученном водном растворе маннита с концентрацией бортезомиба 1,0-2,5 мг/мл.

Изобретение относится к медицине, а именно к экспериментальной онкологии, и может быть использовано для повышения осмотической резистентности мембран эритроцитов в условиях экспериментального канцерогенеза печени и пищевода, индуцированного N-нитрозодиэтиламином.

Изобретение относится к соединениям, имеющим структурную формулу (I): ,или его соль, или сольват; где А1 и А2 независимо представляют собой кислород; R1 выбран из группы, включающей водород, NH2; R2 выбран из группы, включающей: , ,R3, R5, R6 и R9 независимо представляют собой R7; R4 выбран из группы, включающей С1-4галогеналкил, -(CHR)nC(OH)(CF3)2, -C(O)OR11, -SO2NHC(=O)CH3, -SO2NH2, , , ;R7 представляет собой водород; R11 независимо выбран из группы, включающей водород, С1-2алкил или (CH2)2N(CH3)2; и n равно 0; соединениям, имеющим структурную формулу (II): ,где X представляет собой N или СН; R4 выбран из группы, включающей -C(O)OR11, -C(CF3)(CF3)OH, -(CHR)nC(OH)(CF3)2, , , ;R11 выбран из группы, включающей водород, С1-2алкил или (CH2)2N(CH3)2; и n равно 0; фармацевтическим композициям, содержащим их и к применению таких соединений в лечении и/или предупреждении определенных типов рака, боли, воспаления, рестеноза, атеросклероза, псориаза, тромбоза, болезни Альцгеймера, или дисфункции, связанных с дисмиелинизацией или демиелинизацией.

Изобретение относится к замещенным бензольным соединениям, представленным формулами I, III, VI, VII.Соединение формулы III: ,или его фармацевтически приемлемые соли, где R801 представляет собой C1-6 алкил, C2-6 алкинил, гетероциклоалкил, выбранный из морфолина, пирролидина, тетрагидротиофена, пиперидина, пиперазина, оксетана, пирана, тетрагидропирана, азетидина и тетрагидрофурана, фенил или гетероарил, выбранный из пиррола, фурана, тиофена, тиазола, изотиазола, имидазола, триазола, тетразола, пиразола, оксазола, изоксазола, пиридина, пиразина, пиридазина и пиримидина, каждый из которых содержит в качестве заместителя O-C1-6 алкил-Rx, где Rx представляет собой гидроксил или O-C1-3 алкил и Rx необязательно дополнительно замещен O-C1-3 алкилом; каждый из R802 и R803 независимо представляет собой H, галоген, C1-4 алкил или C1-6 алкоксил; каждый из R804 и R805 независимо представляет собой C1-4 алкил; иR806 представляет собой –Qx-Tx, где Qx представляет собой связь или C1-4 алкильную связующую группу, Tx представляет собой H, тетрагидропиранил, пиперидинил, замещенный 1, 2 или 3 C1-4 алкильными группами, или циклогексил, содержащий в качестве заместителя N(C1-4 алкил)2, где один или оба C1-4 алкила необязательно содержат в качестве заместителя C1-6 алкокси; обладающие способностью ингибировать активность EZH2, а также к фармацевтическим композициям, содержащим указанные соединения, и способам лечения.

Изобретение относится к гидробромиду N-((4,6-диметил-2-оксо-1,2-дигидропиридин-3-ил)метил)-5-(этил(тетрагидро-2H-пиран-4-ил)амино)-4-метил-4'-(морфолинометил)-[1,1'-бифенил]-3-карбоксамида, а также его полиморфной форме.

Изобретение относится к солям, состоящим из янтарной кислоты и малеиновой кислоты, и соединения, представленного формулой (I) Изобретение также относится к их кристаллам и фармацевтической композиции на их основе.

Изобретение относится к области биотехнологии, конкретно к биологически активным пептидам, и может быть использовано в медицине. На основе антимикробного пептида тахиплезина из гемоцитов мечехвоста, представителя семейства бета-шпилечных АМП, получен пептид Tach1[Ile11Asp].

Изобретение относится к способу получения кристаллического полиморфа 2-(4-(2-(1-изопропил-3-метил-1Н-1,2,4-триазол-5-ил)-5,6-дигидробензо[f]имидазо[1,2-d][1,4]оксазепин-9-ил)-1Н-пиразол-1-ил)-2-метилпропанамида (GDC-0032, таселисиб), включающему нагревание суспензии в изоамиловом спирте и охлаждение смеси, посредством чего образуется кристаллический полиморф, характеризующийся рентгеновской порошковой дифрактограммой, имеющей характеристические пики, выраженные в градусах 2-тэта при приблизительно 9.40, 10.84, 16.72, 18.7 и 26.60.

Изобретение относится к новому соединению или его фармацевтически приемлемой соли Формулы (A), обладающим свойствами ингибитора NAE (Neddβ активирующий фермент). Соединения могут найти применение в качестве противоопухолевого агента.

Настоящая группа изобретений относится к медицине, а именно к неврологии, и касается лечения цереброваскулярных нарушений головного мозга. Для этого на фоне общепринятой терапии дополнительно осуществляют введение препарата «Ралейкин» внутривенно в дозе 10-30 мг/кг или сочетанное введение «Ралейкина» внутривенно в дозе 10-20 мг/кг и препарата супероксиддисмутазы «Рексод» внутривенно в дозе 0,1-0,2 мг/кг.

Группа изобретений относится к области медицины, а именно к фармакологии и иммунологии, и предназначена для лечения субъекта, имеющего аутоиммунное заболевание. Для лечения субъекта, имеющего аутоиммунное заболевание, указанному субъекту вводят терапевтически эффективное количество водного фармацевтического состава, включающего адалимумаб в концентрации, равной по меньшей мере 50 мг/мл, и воду.

Группа изобретений относится к медицине и предназначена для лечения или предотвращения мастита у млекопитающего, отличного от человека. Используют фармацевтическую композицию, включающую смесь фосфомицина и, по крайней мере, одного антимикробного агента, выбранного из энрофлоксацина, цефазолина, амоксициллина и пирлимицина.

Изобретение относится к антибактериальной композиции для доставки Грамицидина С к очагу местного воспаления. Композиция содержит Грамицидин С, спирт этиловый, полисорбат, пропиленгликоль и воду очищенную в указанных в формуле изобретения количествах.

Изобретение относится к ветеринарии, в частности к ветеринарной фармакологии, может быть использовано для коррекции антиоксидантного статуса новорожденных телят, а также для профилактики заболеваний неинфекционной этиологии.
Изобретение касается косметической композиции для волос, включающей компоненты), где массовое соотношение между компонентами (А) и (В) ((А)/(В)), равное 30/70 или более и 70/30 или менее, и имеющая значение рН, равное 6 или менее.

Группа изобретений относится к медицине и раскрывает композицию и способы для лизиса, ингибирования, снижения развития резистентности грам-положительных бактерий, конкретно стафилококка и стрептококка, а также потенцирования антибиотической активности с использованием комбинаций лизина PlySs2 и одного или нескольких антибиотиков, включающих даптомицин, ванкомицин и оксациллин.

Группа изобретений относится к области медицины, а именно к офтальмологии, и предназначена для лечения сухости глаз. Офтальмологическая композиция для лечения сухости глаз содержит от 0,1 до 0,2 мас./об.% галактоманнана, от 0,05 до 0,5 мас./об.% гиалуроновой кислоты и от 1,0 до 2,0 мас./об.% сорбитола.

Изобретение относится к области ветеринарии и представляет собой способ профилактики кокцидиоза цыплят-бройлеров при выращивании их на мясо, включающий введение им в корм кокцидиостатиков, отличающийся тем, что в качестве кокцидиостатиков цыплятам-бройлерам в корм добавляют композицию, состоящую из диакокса и кокцисана 12%, причем перед добавкой в корм их перемешивают с цеолитом в соотношении 1:1:10, и отдельно фармкокцида 10, причем диакокс и кокцисан 12% добавляют в корм с 3-5-дневного возраста, в течение 30 дней, в дозах, соответственно, по 500 г на 1 тонну корма, затем с 33-35-дневного возраста и до конца периода выращивания в корм добавляют фармкокцид 10 в дозе 1250 г на 1 тонну корма, при этом, за 5 дней до убоя, дачу препарата прекращают.

Группа изобретений относится к медицине, а именно к офтальмологии, и может быть использована для снижения образования шрамов у субъекта с кератоконъюнктивальным расстройством.

Изобретение относится к медицине и предназначено для профилактики неалкогольной жировой болезни печени у пациентов с желчнокаменной болезнью (ЖКБ) после лапароскопической холецистэктомии.
Наверх