Иммерсионная композиция

Иммерсионная композиция относится к оптическому материаловедению и может быть использована в качестве иммерсионной жидкости в оптическом приборостроении для контроля параметров материалов и оптических деталей, в том числе крупногабаритных изделий сложной формы, а также в геологии и минералогии для контроля и маркировки образцов природных материалов. Иммерсионная композиция содержит компоненты (мас.%): поливинилпирролидон (молекулярный вес Ms=1300000) 0,1-20, пропанол-2 18,7-79, воду 10-65, нитрат, по крайней мере, одного элемента, выбранного из группы, состоящей из Zn, Pb, Al, Na, Mg 0,1-10, наночастицы сульфида, по крайней мере, одного элемента, выбранного из группы, состоящей из Zn и Рb 0-10. Иммерсионная композиция обеспечивает формирование при комнатной температуре на поверхности стекол однородное прозрачное покрытие, имеющее показатель преломления 1,51-1,70. 3 ил., 4 табл., 4 пр.

 

Изобретение относится к оптическому материаловедению и может быть использовано в качестве иммерсионной жидкости в оптическом приборостроении для контроля параметров материалов и оптических деталей, в том числе крупногабаритных изделий сложной формы, а также может быть использовано в геологии и минералогии для контроля и маркировки образцов природных материалов.

Известна иммерсионная жидкость (Патент РФ №2051940, МПК С09К 3/00, G01M 1/00, G02B 1/06, дата приоритета 22.06.1993, дата публикации 10.01.1996) и иммерсионная жидкость для оптических исследований (Патент РФ №2134708, МПК С09К 3/00, G02B 1/06, дата приоритета 21.01.1998, дата публикации 20.08.1999), в которых описываются иммерсионные жидкости для контроля оптических параметров неорганических материалов, содержащие йодиды металлов и воду. Однако использование жидкостей, содержащих иодиды тяжелых металлов (например, патент №РФ 2134708 описывает жидкость, содержащую иодид кадмия) экологически небезопасно.

Известна иммерсионная жидкость (Патенте РФ №2535065, МПК С09К 3/00 (2006.01); G02B 1/04 (2006/01), дата приоритета 25.07.2012, дата публикации 10.12.2014), содержит 97-99 мас. % мета-бис (мета-феноксифенокси)бензола и 1-3 вес. % 2-нафтола. Для уменьшения вязкости и поверхностного натяжения указанная жидкость может содержать дополнительно (сверх 100 мас. %) дибутилсебацината. При нанесении на поверхность испытуемого изделия иммерсионная жидкость образует на поверхности испытуемого изделия тонкую прозрачную пленку, обеспечивая возможность контроля внутренних слоев материала без специальной трудоемкой механической полировки поверхности. Существенным недостатком иммерсионной жидкости, описанной в этом патенте, является ее высокий показатель преломления (nD>1,6), что делает невозможным ее использование для контроля качества стекол для дисплеев и многих широко распространенных оптических стекол.

По технической сущности и химическому составу наиболее близким к разработанной иммерсионной композиции является композиционный материал, описанный в работе (Chaudhuri T.K., Patel M.G. High-refractive index Nanocomposite Films of Polyvinyl-pyrolidone and CdS Nanoparticles by In-Sity Thermolysis. - International Conference on Physics of Emerging Functional Materials (PEFM-2010). AIP Conference Proceedings, v. 1313, №1, pp.275-277). Полученные пленки имели толщину 0,7 мкм и демонстрировали край поглощения около 500 нм, что было связано с присутствием частиц CdS, имеющих размер 5-10 нм. В спектральной области прозрачности пропускание пленок составляло 85%. Показатель преломления пленок составлял 1,74 (показатели преломления ПВП и CdS составляют 1,48 и 2,5, соответственно). Проведенные авторами исследования показали наличие сильного взаимодействия наночастиц CdS и ПВП матрицы, что может свидетельствовать о стабильности разработанного материала. Существенным недостатком этих композиционных покрытий является их высокий показатель преломления, значительно превосходящий значения показателя преломления большинства промышленно выпускаемых стекол. Использование в составе покрытия - прототипа соединений кадмия создает дополнительные экологические проблемы.

Техническая задача настоящего изобретения состоит в разработке композиции, обеспечивает формирование при комнатной температуре на поверхности стекол однородного прозрачного покрытия, имеющего показатель преломления 1,51-1,70.

Сущность заключается в том, что иммерсионная композиция состоит из следующих компонентов:

Поливинилпирролидон (молекулярный вес Ms=1300000) 0,1-20 мас. %
Пропанол-2 18,7-79 мас. %
Вода 10-65 мас. %
Нитрат, по крайней мере, одного элемента,
выбранного из группы, состоящей
из Zn, Pb, Al, Na, Mg 0,1-10 мас. %.
Наночастицы сульфида, по крайней мере, одного элемента,
выбранного из группы, состоящей из Zn и Pb 0-10 мас. %.

Введение в состав композиции нитрата свинца способствует повышению показателя преломления иммерсионного покрытия. Это соединение хорошо растворимо в воде и низших спиртах и имеет высокий показатель преломления (n=1,782) (Pradyot P. Handbook of Inorganic Chemical Compounds. - McGraw-Hill, 2003, p. 475; Richards T.W., Schumb W.C. Refractive index and Solubilities of the Nitrates of Lead Isotopes. - Proceedings of the National Academy of Sciences of the United States of America, 1918, V. 4 №12, pp. 386-387). Азотнокислый свинец входит в состав специальной иммерсионной жидкости для смотровых радиационно-защитных стекол (Арбузов В.И., Волынкин В.М. Иммерсионная жидкость для смотровых радиационно-защитных стекол. - Сборник трудов XI международной конференции «Прикладная оптика - 2014», 21024 октября 2014, СПб, 2014, т. 3, с. 11-13).

Увеличению показателя преломления композиции при сохранении ее оптической прозрачности способствует также введение в ее состав нитрата алюминия и/или нитрата цинка.

Использование в составе композиции нитратов металлов в количестве не менее 0,1 мас. % позволяет расширить возможный диапазон варьирования показателя преломления иммерсионной композиции. При содержании нитратов металлов в составе композиции менее 0,1 мас. % их влияние на показатель преломления материала становится слишком малым. В то же время при содержании в иммерсионной композиции нитратов металлов более 10 мас. % возможно ее помутнение из-за ограниченной растворимости этих солей в водно-спиртовом растворе поливинилпирролидона.

Поливинилпирролидон (ПВП) представляет собой нетоксичный органический полимер, хорошо растворимый в воде и низших спиртах и имеющий структурную формулу:

Показатель преломления ПВП при 20°С составляет n=1,52 (λ=0,589 мкм) (Сидельковская Ф.П. "Химия N-винилпирролидона и его полимеров". - «Наука», М., 1970, 150 с.). Эффективность использования ПВП в качестве компонента, стабилизирующего полупроводниковые нанокристаллы PbS и ZnS была показана в (Tran Minh Thi, Le Van Tinh, Bui Hong Van, Pham Van Ben, Vu Quoc Trung, "The Effect of Polyvinylpyrrolidone on the Optical Properties of the Ni-Doped ZnS Nanocrystalline Thin Films Synthesized by Chemical Method". - Journal of Nanomaterials, Volume 2012, Article ID 528047, 8 pages, doi: 10.1155/2012/528047) и (Багров И.В., Данилов B.B., Евстропьев С.К., Киселев В.М., Кисляков И.М., Панфутова А.С., Хребтов А.И. Фотоиндуцированное изменение люминесцентных свойств суспензий наночастиц PbS, стабилизированных поливинилпирролидоном. - Письма в ЖТФ, 2015, т. 41, вып. 2, с. 25-31).

Макроскопический сульфид свинца PbS обычно представляет собой нерастворимый в воде черный порошок. Макроскопические кристаллы сульфида цинка ZnS также малорастворимы в полярных растворителях (вода, низшие спирты). Сульфиды свинца и цинка имеют высокий показатель преломления и введение этих компонентов в состав материала способствует увеличению его показателя преломления. Вместе с тем очевидно, что использование в иммерсионных композициях сульфида свинца с размерами кристаллов более 50 нм невозможно из-за их непрозрачности в видимой части спектра.

Введение в состав иммерсионной композиции высокопреломляющих нанокристаллов сульфидов свинца и/или цинка способствует увеличению ее показателя преломления при сохранении прозрачности материала в видимой части спектра. Однако для сохранения однородности и временной стабильности композиции массовое содержание этих компонентов в ее составе не должно превышать 10%.

Кроме того, в состав жидкой композиции входит пропанол-2, хорошо смешивающийся с водой и образующий смеси, легко испаряющиеся при комнатной температуре. Добавка пропанола-2 снижает поверхностное натяжение жидкой композиции и способствует формированию однородного покрытия. При содержании пропанола-2 в составе менее 18,7 мас. % композиция обладает высоким поверхностным натяжением и малой адгезией к поверхности стекол. В результате нанесенная на поверхность стекла слои композиции распадаются на отдельные хаотично расположенные капли и использование такой композиции невозможно.

Азотнокислые соли свинца, алюминия и цинка имеют ограниченную растворимость в пропаноле-2. Поэтому содержание пропанола-2 в иммерсионной композиции не должно превышать 79 мас. %.

Для получения тонкого слоя на поверхности испытуемого материала композицию наносят кистью или тампоном. После нанесения слоя композиции на шлифованную или матированную поверхность испытуемого образца при просвечивании могут быть определены включения, пузыри, свили и другие дефекты в объеме материала.

Предлагаемая иммерсионная композиция предназначена для контроля отдельных оптических параметров неорганических материалов (бессвильность, пузырность, наличие технологических включений). Контроль осуществляется в стационарных условиях при комнатной температуре.

Толщина и прозрачность иммерсионного покрытия зависит от вязкости жидкой композиции, метода и условий ее нанесения на поверхность испытуемого изделия. В свою очередь, выбор оптимальных условий нанесения композиции зависит от шероховатости поверхности изделия. При увеличении шероховатости поверхности, например, при более грубой шлифовке испытуемого изделия, возникает необходимость нанесения более толстого покрытия и значительно более точного соответствия показателей преломления испытуемого материала и иммерсионного покрытия.

Сущность предлагаемого изобретения поясняется чертежами, где приведены на:

фиг. 1 - Спектры пропускания исходного полированного щелочно-силикатного стекла (кривая 1), аналогичного стекла с покрытием, нанесенным на обе стороны образца и содержащим нитрат алюминия и поливинилпирролидон (композиция 1) (кривая 2), стекла с покрытием, нанесенным на одну сторону образца и содержащим наночастицы сульфида свинца, нитрат свинца и поливинилпирролидон (композиция 13) (кривая 3);

фиг. 2 - Фотография заготовки оптического стекла К8, на часть поверхности которой нанесено композиционное иммерсионное покрытие на основе ПВП, содержащее нитрат цинка (композиция 16);

фиг. 3 - Спектр поглощения стекла с покрытием 24.

ПРИМЕР 1. Иммерсионные композиции на основе солей алюминия

Изготовлены жидкие композиции путем смешения при комнатной температуре компонентов при различных соотношениях. Химический состав и свойства композиций приведены в Таблице 1.

Внешний вид иммерсионной композиции определялся по ГОСТ 13739-78 путем визуального просмотра композиции налитой в пробирку из бесцветного стекла по ГОСТ 10515-75.

Измерения спектров пропускания образцов осуществлялось на спектрофотометре Shimadzu UV-3600.

На Фиг. 1 приведены спектры пропускания исходного полированного щелочно-силикатного стекла (кривая 1) и аналогичного стекла с покрытием, нанесенным на обе стороны образца и содержащим нитрат алюминия и поливинилпирролидон (покрытие 1, таблица 1). Из сопоставления этих спектров видно, что нанесение иммерсионного покрытия практически не изменяет пропускания образца в видимой части спектра.

В Таблице 1 приведены характеристики иммерсионных композиций на основе ПВП и нитрата алюминия. Композиции 1-4 представляют собой прозрачные однородные растворы, имеющие показатель преломления nD=1,360÷4,366. При нанесении этих композиций на поверхность стекла формируются однородные прозрачные покрытия, показатель преломления nD которых составляет 1,520÷1,538.

Композиция 5, изготовленная без использования нитратов металлов и наночастиц, представляет собой прозрачную жидкость, имеющую показатель преломления 1,3603. При нанесении на поверхность стекла этой композиции формируется неоднородное прозрачное покрытие.

Композиция 6, изготовленная без использования ПВП, представляет собой прозрачную жидкость, имеющую показатель преломления 1,3400. При нанесении на поверхность стекла этой композиции формируется неоднородное непрозрачное покрытие белого цвета.

Композиция 7, содержащая более 20 мас. % ПВП, представляет собой прозрачную, но очень вязкую композицию, которую трудно применять для изготовления покрытий.

Композиция 8, содержащая менее 10 мас. % воды, представляет собой мутную неоднородную жидкость и при нанесении на поверхность стекла формирует неоднородное покрытие. В жидкости видны отдельные белые хлопьевидные частицы.

Композиция 9, содержащая 99 мас. % пропанола-2 и 0,5 мас. % нитрата алюминия также представляет собой мутную неоднородную жидкость, что может объясняться малой растворимостью нитрата алюминия в алифатических спиртах.

ПРИМЕР 2. Иммерсионные композиции на основе солей свинца

Изготовлены жидкие композиции путем смешения при комнатной температуре компонентов при различных соотношениях. Химический состав и свойства композиций приведены в Таблице 2.

Внешний вид иммерсионной композиции определялся по ГОСТ 13739-78 путем визуального просмотра композиции налитой в пробирку из бесцветного стекла по ГОСТ 10515-75.

Измерения спектров пропускания образцов осуществлялось на спектрофотометре Shimadzu UV-3600.

Композиция 10, содержащая 18,2 мас. % нитрата свинца и относительно небольшое количество жидкой фазы, представляет собой неоднородную жидкую смесь.

Композиция 11 представляет собой прозрачную однородную жидкость, имеющую показатель преломления 1,3606. После нанесения на поверхность стекла и последующей сушки на воздухе на поверхности формируется прозрачное однородное покрытие, имеющее показатель преломления 1,701.

Композиция 12, представляющая собой водный раствор нитрата свинца, имеющий показатель преломления 1,3750, при нанесении на поверхность стекла распадается на отдельные капли, формируя неоднородное покрытие.

Композиция 13 содержит квантовые точки PbS и представляет собой прозрачную однородную жидкость коричневого цвета, имеющую показатель преломления 1,3586. Нанесение этой композиции на стекло и последующая сушка на воздухе приводит к получению прозрачного однородного покрытия, имеющего показатель преломления 1,598. На Фиг. 1 (кривая 3) приведен спектр щелочно-силикатного стекла, на одну из поверхностей которого нанесено покрытие, изготовленное из композиции 13 (Таблица 2). Из приведенных данных видно, что стекло с этим покрытием прозрачно (Т>80%) в видимом спектральном диапазоне.

Композиция 14, содержащая менее 10 мас. % воды (содержание 4,79 мас. %), представляет собой неоднородную темно-коричневая жидкость с вкраплениями черных частиц. Такая композиция не может быть использована в качестве иммерсионного покрытия.

ПРИМЕР 3. Иммерсионные композиции на основе солей цинка

Изготовлены жидкие композиции путем смешения при комнатной температуре компонентов при различных соотношениях. Химический состав и свойства композиций приведены в Таблице 3.

Внешний вид иммерсионной композиции определялся по ГОСТ 13739-78 путем визуального просмотра композиции налитой в пробирку из бесцветного стекла по ГОСТ 10515-75.

Композиция 15 представляет собой прозрачный однородный водный раствор нитрата цинка, имеющий показатель преломления 1,3414. При нанесении на стекло раствор распадается на отдельные капли, при высыхании которых образуется белое непрозрачное неоднородное покрытие.

Композиция 16 представляет собой прозрачный однородный раствор, имеющий показатель преломления 1,3661. На Фиг. 2 представлена фотография заготовки оптического стекла К8, на часть поверхности которой нанесено композиционное Zn(NO3)2/ПВП иммерсионное покрытие, полученное при использовании композиции 16 и имеющее показатель преломления 1,532. Представленная фотография показывает возможность детального контроля внутренних слоев заготовки стекла после нанесения на ее шлифованную поверхность разработанного иммерсионного покрытия.

Композиции 17-20 представляют собой прозрачные однородные жидкости, содержащие квантовые точки сульфида цинка и имеющие показатель преломления 1,3705-1,3711. При их использовании на поверхности стекла было сформировано однородные прозрачные покрытия, имеющие показатель преломления 1,537-1,542.

Композиция 21 содержит более 10 мас. % квантовых точек ZnS и представляет собой вязкую мутную и неоднородную жидкость. Такая композиция не может быть использована в качестве иммерсионного покрытия.

Композиция 22 содержит более 10 мас. % нитрата цинка и представляет собой вязкую мутную и неоднородную жидкость. Такая композиция не может быть использована в качестве иммерсионного покрытия.

Композиция 23 содержит 20 мас. % ПВП, 30 мас. % пропанола-2, 0,1 мас. % нитрата Zn и представляет собой вязкую прозрачную жидкость, имеющую показатель преломления 1,410. При ее использовании на поверхности стекла было сформировано однородное прозрачное покрытие, имеющее показатель преломления 1,520.

Композиция 24 содержит 10 мас. % нитрата Zn и представляет собой вязкую прозрачную жидкость, имеющую показатель преломления 1,390. При ее использовании на поверхности стекла было сформировано однородное прозрачное покрытие, имеющее показатель преломления 1,521.

Композиция 25 содержит 10 мас. % наночастиц ZnS и представляет собой вязкую прозрачную жидкость, имеющую показатель преломления 1,420. При ее использовании на поверхности стекла было сформировано однородное прозрачное покрытие.

Композиция 26 содержит 18,6 мас. % пропанола-2 и представляет собой опалесцирующую жидкую смесь, имеющую показатель преломления 1,391. При ее использовании на поверхности стекла было сформировано однородное прозрачное покрытие.

Композиция 27 содержит 79,1 мас. % пропанола-2 и представляет собой неоднородную мутную жидкость.

Композиция 28 содержит 10 мас. % наночастиц ZnS и представляет собой вязкую прозрачную жидкость, имеющую показатель преломления 1,3876. При ее использовании на поверхности стекла было сформировано однородное прозрачное покрытие.

Композиция 29 содержит 0,1 мас. % ПВП и 1 мас. % квантовых точек ZnS и представляет собой прозрачную однородную жидкую смесь. При ее использовании на поверхности стекла было сформировано однородное прозрачное покрытие.

Композиция 30 содержит более 80 мас. % воды и представляет собой прозрачную однородную жидкую смесь. При ее использовании на поверхности стекла было сформировано неоднородное покрытие.

Композиция 31 содержит 0,1 мас. % ПВП и представляет собой прозрачную однородную жидкую смесь. При ее использовании на поверхности стекла было сформировано однородное покрытие.

Композиция 32 содержит 0,5 мас. %» ПВП и представляет собой очень вязкую прозрачную смесь. При ее использовании на поверхности стекла было сформировано неоднородное покрытие.

Композиция 33 содержит 10,1 мас. % ПВП и представляет собой очень вязкую прозрачную смесь. При ее использовании на поверхности стекла было сформировано прозрачное однородное покрытие.

Композиция 34 содержит 20,5 мас. % ПВП и представляет собой очень вязкую прозрачную смесь. При ее использовании на поверхности стекла было сформировано неоднородное покрытие.

ПРИМЕР 4. Иммерсионные композиции на основе солей нескольких металлов

Изготовлены жидкие композиции путем смешения при комнатной температуре компонентов при различных соотношениях. Химический состав и свойства композиций приведены в Таблице 4. Внешний вид иммерсионной композиции определялся по ГОСТ 13739-78 путем визуального просмотра композиции налитой в пробирку из бесцветного стекла по ГОСТ 10515-75.

Композиция 23 представляет собой водный раствор ПВП и нитратов свинца и цинка. По внешнему виду она представляла собой бесцветную прозрачную однородную вязкую жидкость (Таблица 4). При нанесении на стекло образующееся покрытие было прозрачным, но неоднородно покрывало поверхность, распадаясь на отдельные капли.

Композиции 24 и 25 содержали нитраты магния и цинка. По внешнему виду композиции представляли собой однородные прозрачные жидкости с показателями преломления 1,3762 и 1,3836. При нанесении на поверхность стекла были получены однородные прозрачные покрытия. Фиг. 3 демонстрирует спектр поглощения покрытия 24 на поверхности стекла. Из приведенных данных видно, что полученное покрытие характеризуется высокой спектральной прозрачностью в видимой части спектра, что позволяет использовать такое покрытие для контроля качества внутренних слоев стекол.

Таким образом, приведенные примеры иллюстрируют эффективность композиции, которая обеспечивает формирование при комнатной температуре на поверхности стекол однородного прозрачного покрытия, имеющего показатель преломления 1,51-1,70.

Иммерсионная композиция, содержащая поливинилпирролидон (молекулярный вес Ms=1300000), пропанол-2, воду, нитрат, по крайней мере, одного элемента, выбранного из группы, состоящей из Zn, Pb, Al, Na, Mg, и, необязательно, наночастицы сульфида, по крайней мере, одного элемента, выбранного из группы, состоящей из Zn и Pb, при следующем соотношении компонентов (мас.%):

Поливинилпирролидон 0,1-20
Пропанол-2 18,7-79
Вода 10-65
Нитрат, по крайней мере, одного элемента,
выбранного из группы, состоящей
из Zn, Pb, Al, Na, Mg 0,1-10
Наночастицы сульфида, по крайней мере, одного элемента,
выбранного из группы, состоящей из Zn и Pb 0-10



 

Похожие патенты:

Изобретение относится к композиции для использования в качестве растворителя или компонента растворителя, содержащей С14-парафины в количестве от 40% до 50% от общей массы композиции и С15-парафины в количестве от 35% до 45% от общей массы композиции, причем С14-парафины и С15-парафины получены из биологического сырья.

Изобретение относится к химической промышленности и касается теплоизоляционной краски, используемой для получения покрытий оборудования, в частности трубопроводов, металлических, бетонных, железобетонных, кирпичных, деревянных и других строительных конструкций жилых, общественных и промышленных зданий и сооружений.

Изобретение относится к установке в виде технологических линий для приготовления продукции/смесей в жидкой среде и применяется в изготовлении лакокрасочной продукции, а также может применяться в переработке нефтепродуктов, химической и пищевой, при производстве строительных материалов, а также получении частиц химических элементов для фармацевтической отрасли и т.п.

Изобретение предлагает гидроолеофобную покровную пленку. Описана гидроолеофобная покровная пленка, которая представляет собой покровную пленку, полученную на поверхности материала для придания ему гидрофобности и олеофобности, причем (1) покровная пленка содержит содержащие диоксид кремния композитные частицы; (2) композитная частица содержит (a) частицу диоксида кремния и (b) покровный слой, который содержит полифторалкилметакрилатный полимер, и нанесен на поверхность частицы диоксида кремния; и (3) величина, полученная делением содержания фтора (мас.%) композитной частицы на удельную поверхность (м2/г) частицы диоксида кремния, составляет от 0,025 до 0,180.
Изобретение относится к дисперсии для нанесения покрытия и строительному изделию, содержащему покрытие. Дисперсия для нанесения покрытия включает воду, диоксид титана, карбонат кальция, обожженный силикат алюминия, акриловые полимеры, дигидразид, фторалкильный полимер, выбранный из группы, состоящей их политетрафторэтилена, тетрафторэтилен-гексафторпропилена, модифицированного тетрафторэтилен-гексафторпропилена, перфторалкоксиэтилена, модифицированного перфторалкоксиэтилена, этилен-тетрафторэтилена, тетрафторэтилен-перфтор(метилвинилового эфира), модифицированного политетрафторэтилена, поливинилиденфторида, этилен-хлортрифторэтилена, сополимера фторалкилметакрилата и их комбинации.
Изобретение относится к композиции для нанесения прозрачного или просвечивающего и бесцветного или почти бесцветного эмиссионного покрытия, в частности, для холодной кровли на металлической поверхности.

Изобретение относится к отверждаемым композициям, полезным, например, для покрытий, герметиков, адгезивов, в частности для антикоррозийных покрытий, а также для изделий, содержащих подложку и отверждаемую композицию.

Изобретение относится к смесям и способам, которые можно применять для получения материалов, содержащих электро- и/или теплопроводящее покрытие, а также к композициям, которые представляют собой материалы, обладающие электро- и/или теплопроводящим покрытием.

Изобретение относится к огнестойкой полимерной композиции, подходящей для использования при нанесении покрытия на обрабатываемые изделия, содержащей термопластичный полимер, содержащий винилацетат, и ненасыщенный эластомер, содержащий двойные связи, в качестве полимерных компонентов, где полимерные компоненты присутствуют в форме гомогенной полимерной смеси, и где формируется смесевая матрица, вулканизованная исключительно при использовании серы или системы сшивания, содержащей серу, где система серного сшивания распространяется по всей матрице и полностью проникает в эту матрицу, а также по меньшей мере один антипирен или комбинацию антипиренов.

Изобретение относится к производным целлюлозы и их применению в качестве добавок в водные среды и твердые материалы. Композиция для модификации вязкости содержит пластинки целлюлозы, содержащие по меньшей мере 60% целлюлозы по весу в сухом состоянии, менее 10% пектина по весу в сухом состоянии и по меньшей мере 5% гемицеллюлозы по весу в сухом состоянии.

Изобретение относится к смесям и способам, которые можно применять для получения материалов, содержащих электро- и/или теплопроводящее покрытие, а также к композициям, которые представляют собой материалы, обладающие электро- и/или теплопроводящим покрытием.

Изобретение относится к скользящим покрытиям для медицинских устройств. Покрытие для медицинского устройства содержит первый слой, содержащий поливинилпирролидон, дериватизированный с помощью фотореакционноспособной бензофеноновой группы; и первое поперечно-сшивающее средство, содержащее по меньшей мере две фотореакционноспособные группы; второй слой, расположенный на первом слое, содержащий поливинилпирролидон, дериватизированный с помощью фотореакционноспособной бензофеноновой группы; второе поперечно-сшивающее средство, содержащее по меньшей мере две фотореакционноспособные группы; и полимер, содержащий полиакриламид, причем полимер дериватизирован с помощью по меньшей мере одной фотореакционноспособной группы; и где первое и второе поперечно-сшивающие средства, включающие по меньшей мере две фотореакционные группы, имеют формулу Photo1-LG-Photo2, где Photo1 и Photo2 независимо представляют собой фотореакционноспособную бензофеноновую группу, a LG представляет собой сшивающую группу, содержащую по меньшей мере один атом кремния или по меньшей мере один атом фосфора; при этом присутствует ковалентная связь между по меньшей мере одной фотореакционноспособной группой и сшивающей группой, где ковалентная связь между по меньшей мере одной фотореакционноспособной группой и сшивающей группой прервана по меньшей мере одним гетероатомом, выбранным из группы, включающей кислород, азот или серу.

Изобретение относится к оптико-механической и электронной промышленности, а точнее к технологии получения композиционных материалов, содержащих полупроводниковые частицы, для оптических и электронных приборов и комплексов.

Изобретение относится к поверхностным покрытиям с противообледенительными свойствами, формованным изделиям и устройствам, содержащим такое покрытие, способам получения и использования таких покрытий, формованных деталей и устройств.

Настоящее изобретение относится к композиции для обработки субстрата, содержащей: a) активный материал, который имеет одну или более функциональных групп, образующих ковалентные присоединения к комплементарным функциональным группам субстрата в присутствии кислоты или основания, при этом активный материал выбран из группы, состоящей из гидрофильных активных материалов, гидрофобных активных материалов и их смесей; b) фотокатализатор, способный генерировать кислоту или основание под действием света, при этом фотокатализатор поглощает свет внутри электромагнитного спектра от инфракрасной области до видимого и ультрафиолетового света, от 1200 нм до 200 нм; и фотокатализатор является фотокислотой, выбранной из группы, состоящей из ароматических гидроксильных соединений, сульфонированных пиреновых соединений, ониевых солей, производных диазометана, производных биссульфона, производных дисульфида, производных нитробензилсульфоната, производных сложных эфиров сульфоновой кислоты, N-гидроксиимидов сложных эфиров сульфоновой кислоты и их комбинаций; и c) носитель для доставки комбинации элементов 1(a) и 1(b); при этом субстраты исключают физиологические материалы.

Изобретение относится к области нанесения антипригарных, антиадгезионных, антикоррозионных покрытий способом гетероадагуляции на твердую поверхность и может быть использовано при производстве химической аппаратуры, посуды, электробытовых приборов и т.д.

Изобретение относится к термостойким антифрикционным покрытиям и может быть использовано в качестве грунтовочного, получаемого на плоской металлической подложке методом накатки с последующим формованием изделий, в частности, - кухонной посуды.
Изобретение относится к области медицины, а именно к полимерным композициям для нанесения на эндопротезы в виде нерассасывающихся хирургических нитей и нерассасывающихся хирургических сеток для реконструктивно-восстановительной хирургии.

Изобретение относится к области химии высокомолекулярных соединений и нанотехнологиям и касается, в частности, способа получения полимерного материала, содержащего неорганические нано- или микрочастицы, который может найти применение в технике, например, в качестве: полимерных материалов с улучшенными механическими свойствами, газопроницаемых материалов, наполнителей резин, каучуков и нанокатализаторов.
Изобретение относится к сельскому хозяйству. Применяют сополимер, содержащий в полимеризованной форме: a) N-винилпирролидон и b) винилимидазол или кватернизированный винилимидазол в качестве диспергирующего агента в водной композиции, содержащей нерастворимый в воде пестицид, который имеет растворимость в воде вплоть до 10 г/л при 20°C.
Изобретение относится к сельскохозяйственной отрасли и служит для улучшения воздействия агрохимикатов. Привитой сополимер, получаемый свободнорадикальной полимеризацией мономерной смеси, содержащей N-виниллактам, виниловый эфир и простой полиэфир, применяют для повышения активности пестицида.
Наверх