Способ формирования группового навигационного сигнала глонасс

Изобретение относится к системам формирования сигнала спутниковой радионавигационной системы ГЛОНАСС, а именно к средствам управления передачей и её коррекцией. Техническим результатом является уменьшение погрешностей формирования сигнала посредством цифрового формирования групповых навигационных радиосигналов диапазонов L1, L2, которые излучаются одной антенной. Способ формирования группового навигационного сигнала ГЛОНАСС включает формирование навигационных сигналов с кодовым и частотным разделением в диапазонах L1, L2 и сигнала с кодовым разделением L3, их усиление и излучение через одну антенну, при котором сигналы в диапазонах L1, L2 с кодовым и частотным разделением суммируются на входе усилителя мощности, при этом образуется суммарный сигнал, имеющий амплитудную модуляцию, далее групповой сигнал синтезируют методом оптимального выравнивания, для этого все сигналы представляются в комплексной форме, далее сигнал преобразуется в выравнивателе, который исключает амплитудную модуляцию и в основе которого лежит преобразование комплексного сигнала в соответствии с определением функции sign:

,

далее конвертер переносит групповой сигнал на несущую частоту. 2 з.п. ф-лы, 2 ил.

 

Изобретение относится к системам формирования сигнала спутниковой радионавигационной системы ГЛОНАСС, а именно к средствам управления передачей сигнала и его коррекции.

Из уровня техники известны способы формирования навигационного сигнала ГЛОНАСС, в частности способ формирования группового сигнала ГЛОНАСС (см. статья А.Ю.Середа, К.В. Детюк «Бортовой информационно-навигационный комплекс КА «ГЛОНАСС-К». Инженерный вестник Дона №3, том.21, 2012, стр.115-119, Издательство Северо-Кавказский научный центр высшей школы федерального государственного автономного образовательного учреждения высшего профессионального образования Южный федеральный университет) [1] при помощи которого осуществляется формирование и излучение навигационных сигналов с частотным разделением в диапазонах L1, L2, а именно сигналов с открытым доступом L1OF, L2OF, и сигналов с санкционированным доступом L1SF, L2SF, также при помощи него осуществляется формирование и излучение навигационного сигнала с кодовым подразделением в диапазоне L3, а именно сигнала с открытым доступом L3OC.

Недостатком указанного в качестве наиболее близкого аналога способа [1] является то, что при помощи него невозможно формировать и излучать сигнал с кодовым разделением в диапазонах L1, L2, что порождает дополнительные взаимные задержки между формируемыми сигналами с частотным и кодовым разделением, приводя к погрешности формирования сигнала.

Техническим результатом заявленного изобретения является обеспечение уменьшения погрешностей формирования сигнала посредством цифрового формирования групповых навигационных радиосигналов диапазонов L1, L2, которые излучаются одной антенной.

Технический результат достигается за счет создания способа формирования группового навигационного сигнала ГЛОНАСС включающего формирование навигационных сигналов с кодовым и частотным разделением в диапазонах L1, L2 и сигнала с кодовым разделением L3, их усиление и излучение через одну антенну, при котором сигналы в диапазонах L1, L2 с кодовым и частотным разделением суммируются на входе усилителя мощности, при этом образуется суммарный сигнал, имеющий амплитудную модуляцию, далее групповой сигнал синтезируют методом оптимального выравнивания, для этого все сигналы представляются в комплексной форме, далее сигнал преобразуется в выравнивателе, который исключает амплитудную модуляцию и в основе которого лежит преобразование комплексного сигнала в соответствии с определением функции sign:

,

далее конвертер переносит групповой сигнал на несущую частоту.

В частном варианте выполнения для комплексных чисел используют следующую аппроксимацию для вычисления :

,

где I и Q являются скалярными значениями действительной и мнимой частей комплексного числа x.

В другом частном варианте выполнения для комплексных чисел используют следующую аппроксимацию для вычисления :

,

где I и Q являются скалярными значениями действительной и мнимой части комплексного числа x.

Заявленное изобретение проиллюстрировано следующими схемами:

Фиг.1 –структурная схема формирователя группового навигационного сигнала ГЛОНАСС.

Фиг. 2–схема формирования выровненного сигнала.

На чертежах обозначено следующее:

1 - Бортовое синхронизирующее устройство;

2 - Цифровой формирователь навигационного радиосигнала L1 с частотным и кодовым разделениями;

3 - Цифровой формирователь навигационного радиосигнала L2 с частотным и кодовым разделениями;

4 - Цифровой формирователь навигационного радиосигнала L3 с кодовым разделениями;

5 - Усилитель мощности;

6 - Режекторный фильтр;

7 - Триплексер;

8 - Антенна.

Заявленный способ формирования группового навигационного сигнала ГЛОНАСС может быть реализован следующим образом.

Общая ширина полосы, в которой расположены все навигационные сигналы системы ГЛОНАСС, составляет более 400 МГц. Для формирования сигналов ГЛОНАСС предлагается формировать и усиливать групповые сигналы в каждом частотном диапазоне по отдельности.

Заявленный способ реализуется посредством излучения сигнала через одну антенну и базируется на принципиально новом методе формирования группового навигационного сигнала, объединяющего кодовые и частотные радиосигналы, характеризующегося неглубокой амплитудной модуляцией и незначительными энергетическими потерями (фиг.1).

Метод формирования группового радиосигнала, объединяющего сигналы с кодовым и частотным разделениями, рассматривается на примере радиосигнала диапазона L1 как наиболее сложного. Спектры сигналов перекрываются, поэтому сложить их на входе антенны после УМ без потерь мощности невозможно.

Для минимизации потерь сигналы суммируются на входе УМ. При этом образуется суммарный сигнал, имеющий амплитудную модуляцию. При отношении мощностей кодового и частотного сигналов 2:1 отношение максимальной амплитуды к минимальной будет равно 6. Следовательно, усилитель мощности должен иметь линейную амплитудную характеристику в диапазоне 16 дБ. Такой усилитель будет иметь КПД не лучше 20 процентов.

Теоретически показано, что синтезированный методом оптимального выравнивания суммарный групповой сигнал обеспечивает минимум потерь мощности формируемого сигнала. Групповой сигнал с неглубокой амплитудной модуляцией (АМ) может быть реализован ценой потери мощности не более 20%. Необходимо оценить, какие искажения и потери возникнут при аппаратной реализации метода на реальных схемах с учётом ограничений по быстродействию и разрядности цифроаналоговых устройств.

Основные операции происходят в преобразователе, который убирает АМ, и конвертере, который переносит групповой сигнал на несущую частоту. Все сигналы представляются в комплексной форме. Преобразователь, далее называемый выравнивателем, построенный на ПЛИС, должен свести АМ к минимуму, сохранив структуру обоих сигналов. Естественно, при этом возникнут комбинационные составляющие сигнала как следствие нелинейного преобразования. Спектр этих составляющих будет накладываться на спектр основных сигналов. Поэтому при усилении группового сигнала в УМ часть мощности перераспределится на них. Отсюда следует первый критерий оптимизации структуры выравнивателя – минимизация потерь. При преобразовании сигнала в конвертере может возникнуть второй источник потерь – зеркальный канал, который при невысокой частоте Fпч, может оказаться в полосе пропускания УМ. Поэтому структура конвертера в сочетании с выравнивателем должна обеспечить подавление зеркального канала не менее 23 дБ, чтобы потери на зеркальный канал были менее 1%.

После прохождения группового сигнала через УМ отношение может измениться, если после выравнивателя останется какая-то амплитудная модуляция. Степень изменения будет зависеть от глубины остаточной модуляции.

Рассмотрим схему формирования выровненного сигнала (фиг.2), в основе которой лежит преобразование комплексного сигнала x в соответствии с определением функции sign:

При реализации такой схемы выравнивания сигналов возможна проблема, связанная с вычислительной сложностью операции sign для комплексных чисел. Для этой цели предлагается использовать следующую аппроксимацию для вычисления :

Величины I и Q являются скалярными значениями действительной и мнимой частей комплексного числа x. Таким образом, модуль этих величин определяется простой операцией отброса знака.

Если точности этой аппроксимации недостаточно, то значение можно вычислить:

В этом случае вычислительную трудность будет представлять операция вычисления квадратного корня. Эту операцию, как и операцию деления, можно выполнять табличным способом.

Предложенный способ формирования группового навигационного сигнала ГЛОНАСС позволяет решить задачу использования метода цифрового формирования групповых навигационных радиосигналов диапазонов L1 и L2, которые можно излучать одной антенной, уменьшить погрешность измерений, повысить пропускную способность межспутниковой радиолинии, совершенствовать радиосигнал межспутниковой радиолинии и аппаратуру приёма сигнала, что обеспечивает повышение скорости передачи по радиолинии в несколько раз.

1. Способ формирования группового навигационного сигнала ГЛОНАСС, включающий формирование навигационных сигналов с кодовым и частотным разделением в диапазонах L1, L2 и сигнала с кодовым разделением L3, их усиление и излучение через одну антенну, при котором сигналы в диапазонах L1, L2 с кодовым и частотным разделением суммируются на входе усилителя мощности, при этом образуется суммарный сигнал, имеющий амплитудную модуляцию, далее групповой сигнал синтезируют методом оптимального выравнивания, для этого все сигналы представляются в комплексной форме, далее сигнал преобразуется в выравнивателе, который исключает амплитудную модуляцию и в основе которого лежит преобразование комплексного сигнала в соответствии с определением функции sign:

,

далее конвертер переносит групповой сигнал на несущую частоту.

2. Способ формирования группового навигационного сигнала ГЛОНАСС по п.1, отличающийся тем, что для комплексных чисел используют следующую аппроксимацию для вычисления :

,

где I и Q являются скалярными значениями действительной и мнимой части комплексного числа x.

3. Способ формирования группового навигационного сигнала ГЛОНАСС по п.1, отличающийся тем, что для комплексных чисел используют следующую аппроксимацию для вычисления :

,

где I и Q являются скалярными значениями действительной и мнимой частей комплексного числа x.



 

Похожие патенты:

Изобретение относится к области радиосвязи, а именно к устройствам, предназначенным для сетей беспроводной связи при многолучевом распространении радиосигнала OFDM, и может быть использовано на базовых станциях и в мобильных терминалах.

Изобретение относится к области радиосвязи и может использоваться при построении адаптивных систем и комплексов КВ радиосвязи. Технический результат заключается в повышении пропускной способности адаптивной системы связи с OFDM сигналами.

Изобретение относится к технике радиосвязи при передаче массивов информации в цифровом формате. Технический результат состоит в обеспечении оптимальной скорости и дальности связи путем варьирования частотой передачи в зависимости от условий связи в канале.

Изобретение относится к спутниковой системе связи, в частности к системе управления космическим аппаратом (КА ) и предназначено для исключения искажения команд управления, передаваемых с наземного комплекса управления (НКУ) на борт КА, вызванного узкополосной помехой.

Изобретение относится к области слежения за полетом космических аппаратов (КА) и может быть использовано в командно-измерительной системе (КИС) спутниковой связи. Способ включает передачу с наземного сегмента управления КИС по линии «Земля - КА» сигналов, содержащих команды управления КА.

Изобретение относится к области связи. Раскрыты способ и система осуществления энергосбережения базовой станции.

Изобретение относится к области радиопередающих устройств и может быть использовано в составе бортовой аппаратуры космических аппаратов. Достигаемый технический результат - уменьшение величины продуктов интермодуляционных искажений третьего порядка, малые затраты ресурсов на реализацию.

Изобретение относиться к технологиям передачи данных и, в частности, к технологии управления мощностью. Техническим результатом является обеспечение возможности передачи отчетов о запасе мощности объединенных несущих UE в сценарии с множеством несущих таким образом, что базовая станция может надежно управлять мощностью передачи UE, и поэтому улучшается надежность и пропускная способность системы.

Изобретение относится к способу конфигурации сигнализации зондирующего опорного сигнала. Технический результат направлен на то, чтобы узел абонентского оборудования апериодически передавал зондирующий опорный сигнал (SRS), что повышает коэффициент использования ресурсов SRS и гибкость планирования ресурсов.

Изобретение относится к беспроводной связи. Описываются системы и способы для облегчения управления мощностью обратной линии связи на канале трафика.

Изобретение относится к определению местоположения транспортного средства (ТС). Техническим результатом является надежная идентификация радиолокационных целей за счет исключения влияния погрешности счислимого места ТС и систематической ошибки курсоуказателя на результаты опознавания целей.

Изобретение относится к технике связи и может использоваться в системах беспроводной связи. Технический результат состоит в повышении пропускной способности каналов передачи.

Изобретение относится к определению местоположения устройства с использованием спутниковой системы позиционирования. Техническим результатом является повышение точности измерения местоположения при максимальном времени работы батареи.
Изобретение относится к способам формирования температурной карты местности путем регистрации электромагнитного излучения, испущенного находящимися на местности объектами.

Изобретение относится к радиотехнике, а именно к области радионавигации, и может быть использовано при построении приемников Глобальных Навигационных Спутниковых Систем (ГНСС)., Достигаемый технический результат – повышение чувствительности, точности и помехозащищенности мультисистемного приемника ГНСС.

Изобретение относится к антенной технике и может использоваться для коррекции амплитудно-фазового распределения в раскрываемых антенных решетках (АР), функционирующих после развертывания на борту космических аппаратов (КА) в составе бортовых радиолокационных комплексов (БРЛК) дистанционного зондирования Земли (ДЗЗ).

Изобретение относится к области радиотехники, вычислительной техники, связи и глобальных навигационных спутниковых систем и может быть использовано в гражданской авиации.

Изобретение относится к области космонавтики, а именно к технике выполнения траекторных измерений и определения параметров орбиты искусственного спутника Земли (ИСЗ), и может быть использовано на наземных и бортовых комплексах управления полетом ИСЗ для точного определения текущих параметров движения ИСЗ.

Изобретение относится к радиотехнике и радиоэлектронике и может быть использовано в радиолокации, навигации и адаптивных системах связи. Технический результат состоит в возможности высокоскоростной передачи информации на основе получения амплитудно-частотных и дистанционно-частотных характеристик (АЧХ и ДЧХ) радиолиний на трассах различной протяженности и ориентации.

Изобретение относится к области навигации по сигналам космических аппаратов (КА) глобальных навигационных спутниковых систем (ГНСС). Достигаемый технический результат – повышение точности определения навигационных измерений и параметров.

Изобретение относится к области позиционирования. Техническим результатом является повышение точности позиционирования в здании, например, при спасательных операциях или во время работы пожарных. Предложен способ позиционирования, относительно координирующего устройства (50) связи, группы подчиненных устройств (10, 20, 30, 40, 50) связи, при этом способ содержит этапы, на которых: передают при помощи координирующего устройства (50) через средства (12, 22, 32, 42, 52) беспроводной цифровой связи в каждое подчиненное устройство (10, 20, 30, 40, 50) таблицу идентификации; передают при помощи каждого устройства (10, 20, 30, 40, 50) его подпись UWB; анализируют при помощи каждого устройства принятые подписи UWB и определяют расстояния, отделяющие указанное устройство (10,20,30,40,50) от каждого из других устройств (10, 20, 30, 40, 50); передают при помощи каждого подчиненного устройства (10, 20, 30, 40) в координирующее устройство (50) расстояния, отделяющие указанное подчиненное устройство (10, 20, 30, 40) от каждого из других устройств (10, 20, 30, 40, 50); определяют при помощи координирующего устройства (50) относительные положения подчиненных устройств (10, 20, 30, 40). 2 н. и 9 з.п. ф-лы, 8 ил.
Наверх