Способ четырехсопловой газопорошковой лазерной наплавки с регулированием расхода порошка

Изобретение относится к способу газопорошковой наплавки и может быть использовано при изготовлении деталей машин и инструмента. На наплавляемую поверхность металлического изделия воздействуют лазерным лучом. В зону наплавки подают порошковой материал посредством транспортирующего газа и осуществляют относительное перемещение луча и изделия по заданной траектории. Лазерный луч перемещают перпендикулярно к поверхности металлического изделия. В зону наплавки подают четыре струи порошка из четырех осесимметрично расположенных независимых сопел, которые перемещают совместно с лазерным лучом. При этом оси симметрии сопел совпадают с осями прямоугольной системы координат поверхности изделия. Объем подаваемого порошка рассчитывают с учетом угла между нулевым положением вектора мгновенной скорости перемещения и расположения сопла относительно лазерного луча. Технический результат состоит в повышении качества наплавки, которое достигается за счет осесимметричной подачи порошкового материала в зону лазерного излучения, позволяющей получать равнопрочное бездефектное наплавочное соединение при движении по любой траектории. 3 ил.

 

Изобретение относится к технологии наплавки деталей машин и инструмента с помощью высококонцентрированных источников нагрева, в частности с помощью лазерного излучения непрерывного действия.

Известны способы газопорошковой лазерной наплавки, которые включают нагрев с расплавлением участка поверхности обрабатываемого материала непрерывным излучением лазера и подачу в пятно нагрева присадочного порошка, транспортируемого газовой струей, при непрерывном перемещении в ходе процесса наплавляемого изделия, либо рабочего инструмента относительно наплавляемого изделия.

Существуют несколько основных способов подачи порошковых материалов в зону лазерного воздействия: боковая подача, многоструйная и коаксиальная подача порошка. Среди многоструйных головок в настоящее время наиболее распространенная с 4-мя осесимметричными трубками (соплами), позволяющая обеспечить симметрию подачи порошка относительно направления движения и возможность перемещения по криволинейной траектории. Такая наплавочная головка серийно выпускается, например, компанией Precitec, Германия [1].

Для получения покрытий несложной формы с невысокими требованиями к качеству поверхности используется наиболее простой метод подачи порошка - боковая подача. Несимметричная схема подачи порошка приводит к высокой пористости и неравномерности толщины слоя. При этом существует необходимость строго соблюдать положение сопла относительно траектории движения. Исключает недостатки такой схемы коаксиальная подача порошка в виде сфокусированного конуса в зону лазерного излучения. Этот метод позволяет наносить покрытия по криволинейной траектории в различных пространственных положениях. Коаксиальная подача порошка является наиболее универсальным методом, при реализации которого, как правило, порошок подается через полость между двумя или тремя коническими поверхностями используемых сопел. Поскольку схема подачи порошка является осесимметричной, то качество получаемых покрытий не зависит от направления движения. Нанесенные этим методом покрытия обладают достаточной плотностью и стабильной толщиной. Недостатком метода коаксиальной подачи порошка является сложность изготовления сопел и устройств, применяемых для лазерной наплавки и выращивания, а также невысокий коэффициент использования присадочного материала.

В патенте РФ №2100479 «Способ газопорошковой лазерной наплавки с двухсопловой подачей порошка», из одного сопла подают порошок вслед движению изделия в головную часть лазерного пятна, а из другого сопла - навстречу движению изделия в центральную и хвостовую часть лазерного пятна. Основным недостатками предложенного способа является низкий коэффициент полезного использования порошка (Кп.и.п.) и невозможность выполнения наплавки по криволинейной траектории. Известно, что, когда порошковая струя действует на расплавленный металл в направлении, противоположном направлению движения формирующегося валика, жидкий металл растекается по поверхности подложки [2], что приводит к уменьшению коэффициента полезного использования порошка. По этой причине у сопла, установленного за лазерным лучом, коэффициент использования порошка стремится к нулю, а максимальный коэффициент достигается при расположении сопла перед лазерным лучом.

Известен способ лазерной наплавки по патенту РФ №1347295, выбранный за прототип, при котором на наплавляемую поверхность воздействуют лазерным лучом, в зону наплавки подают струю порошкового материала и осуществляют относительное перемещение луча и наплавляемого изделия. Кроме того, струю порошкового материала разделяют на несколько частей с различным расходом порошка. Однако разделение струи производят с помощью устройства, содержащего распределитель струи порошкового материала, выполненный в виде обечайки прямоугольного сечения с продольными перегородками. В этом случае, порошковый материал в зону наплавки всегда подается с одной стороны от лазерного луча. Это приводит к формированию несимметричного и неравнопрочного по сечению наплавочного валика, в котором на границе сплавления основного и присадочного материала могут образовываться поверхностные дефекты.

Задачей настоящего изобретения является создание способа лазерной наплавки, позволяющего повысить качество наплавки, а также Кп.и.п. при перемещении наплавочной головки по любой, в том числе и криволинейной траектории.

Указанный технический результат достигается в заявленном способе газопорошковой лазерной наплавки, при котором на наплавляемую поверхность металлического изделия воздействуют лазерным лучом, в зону наплавки транспортирующим газом подают порошковой материал и осуществляют относительное перемещение луча и изделия по заданной траектории. Кроме того, лазерный луч перемещают перпендикулярно к поверхности металлического изделия, а в зону наплавки подают четыре струи порошка из четырех независимых сопел, перемещаемых совместно с лазерным лучом и расположенных относительно него всегда осесимметрично. При этом оси симметрии сопел совпадают с осями прямоугольной системы координат поверхности изделия, а подачу порошка в зону наплавки в процессе перемещения лазерного луча осуществляют из каждого сопла по следующим отношениям:

где V1, V2, V3, V4 - объем порошка, подаваемого в 1-е, 2-е, 3-е и 4-е сопло, %,

ϕ - угол между нулевым положением вектора мгновенной скорости перемещения луча V0, направление которого совпадает со следующим расположением сопел: первое сопло расположено впереди лазерного луча, 2-е и 3-е - слева и справа от луча соответственно, а 4-е сопло - позади луча, и вектором мгновенной скорости перемещения луча Vмгн, вычисляемым из уравнения движения наплавочной головки в определенный момент времени. Уравнение движения формируется промышленным компьютером системы управления по координатам перемещения наплавочной головки.

Уравнение движения наплавочной головки описывает траекторию движения лазерного луча совместно с подающими порошок соплами относительно обрабатываемого изделия и представляет собой типовое уравнение плоскопараллельного движения твердого тела [4].

Повышение качества наплавки достигается за счет осесимметричной подачи порошкового материала в зону лазерного излучения (зону наплавки), позволяющей получать равнопрочное бездефектное наплавочное соединение при движении по любой траектории. Для обеспечения качественного формирования наплавочного валика при движении как по прямолинейной, так и по криволинейной траектории была выбрана четырехсопловая конструкция сопла с осесимметричной подачей порошка, выпускаемая компанией Precitec, Германия [1].

Повышение ..Кп.и.п.. достигается за счет регулировки расхода присадочного материала из каждого сопла по отдельности в зависимости от траектории движения.

Заявляемый способ поясняется схемой взаимного расположения векторов мгновенной скорости перемещения луча при перемещении наплавочной головки (фиг. 1), чертежом внешнего вида четырехсопловой головки (фиг. 2), а также схемой технологического оборудования для реализации процесса четырехсопловой наплавки (фиг. 3).

Заявляемый способ осуществляется следующим образом: наплавляемое изделие закрепляют на манипуляторе 1 (фиг. 3), позволяющем осуществлять позиционирование изделия в двух плоскостях и обеспечивать, таким образом, наплавку по сложной криволинейной траектории. В зону обработки от лазера 2 по оптическому волокну передают лазерное излучение к наплавочной головке 3, которая установлена на робот-манипулятор 4, осуществляющий ее перемещение в пространстве относительно изделия. С помощью порошкового питателя 5, через сопла, закрепленные на наплавочной головке, в зону наплавки транспортирующим газом подают порошок. При изменении траектории движения наплавочной головки по команде системы управления с промышленным компьютером 6, выполняющим расчет объема подаваемого порошкового материала по указанным отношениям в режиме реального времени, с помощью изменения давления транспортирующего газа, осуществляется перераспределение расхода порошка в каждом сопле, в зависимости от их расположения относительно вектора мгновенной скорости перемещения луча Vмгн. Изменение давления осуществляется порошковым питателем, например, Плакарт PF [3].

Соотношения объемов порошка, подаваемого при движении по прямолинейным и криволинейным траекториям, при которых обеспечивается качественное формирование наплавочного валика и достигается максимальный коэффициент использования порошка, были определены экспериментальным путем при наплавке порошковых материалов на основе Co, Ni и Fe на поверхности различных машиностроительных изделий.

Список источников

[1] http://www.precitec.de/en/products/joining-technology/processing-heads/yc52/cladding-head-yc52-different-nozzle-concept/

[2] Григорьянц А.Г., Шиганов И.Н., Мисюров А.И. «Технологические процессы лазерной обработки» / Под р ед. А.Г. Григорьянца. - М.: Изд-во МГТУ им. Н.Э. Баумана, 2006. - 664 с.: ил. - ISBN 5-7038-2701-9, стр. 344.

[3] http://www.plackart.com/coating_materials/feeders.html

[4] Черняховская Л.Б., Шабанов Л.А. «Плоскопараллельное движение плоского тела» / Под ред. Я.М. Клебанова: Изд-во ФГБОУ ВО «Самарский государственный технический университет», 2008 - 27 с., стр. 4.

Способ газопорошковой лазерной наплавки, включающий воздействие на наплавляемую поверхность металлического изделия лазерным лучом, подачу в зону наплавки транспортирующим газом порошкового материала и относительное перемещение луча и изделия по заданной траектории, отличающийся тем, что лазерный луч направляют перпендикулярно к поверхности металлического изделия, подачу в зону наплавки транспортирующим газом порошкового материала осуществляют посредством четырех струй порошка из четырех сопел, которые перемещают совместно с лазерным лучом, при этом упомянутые сопла располагают относительно лазерного луча осесимметрично, причем оси симметрии сопел совпадают с осями прямоугольной системы координат поверхности изделия, а объем порошка, который подают в зону наплавки в процессе перемещения лазерного луча из каждого сопла, определяют по следующим отношениям:

где V1, V2, V3, V4 - объем порошка, подаваемого в 1-е, 2-е, 3-е и 4-е сопло, %;

ϕ - угол между нулевым положением вектора мгновенной скорости перемещения V0, направление которого совпадает со следующим расположением сопел: первое сопло расположено впереди лазерного луча, 2-е и 3-е - слева и справа от луча, а 4-е сопло - позади луча, и вектором мгновенной скорости перемещения Vмгн.



 

Похожие патенты:

Изобретение относится к способу изготовления изделия из трубных заготовок и может быть использовано в технологических процессах изготовления теплообменных панелей методом лазерной сварки.

Изобретение относится к способу ремонта конструктивного элемента (4) с трещинами. Осуществляют оплавление по меньшей мере одной трещины (7, 7’, 7’’, …) конструктивного элемента (4) сварочным лучом (13).

Изобретение относится к послойному изготовлению деталей. Способ включает этапы: (а) обеспечение материала в виде порошка, (b) нагрев первого количества порошка до температуры, превышающей температуру плавления TF порошка, и формирование на поверхности основы первой ванны, содержащей расплавленный порошок и часть основы, (с) нагрев второго количества порошка и формирование на поверхности основы второй ванны на выходе первой ванны, (d) повторение этапа (с) до получения первого слоя детали на основе, (е) нагрев n-го количества порошка и формирование n-ой ванны над частью первого слоя, (f) нагрев [n+1]-го количества порошка до температуры, превышающей температуру плавления ТF порошка, и формирование [n+1]-ой ванны, частично содержащей расплавленный порошок, на выходе n-ой ванны, (g) повторение этапа (f) до получения второго слоя детали, (h) повторение этапов (е)-(g) до получения окончательной формы детали.

Изобретение относится к способу ремонта продольного шва трубы, нанесенного методом лазерной сварки. Осуществляют обнаружение дефекта методом ультразвукового контроля путем сканирования вдоль линии шва с использованием ультразвуковых преобразователей до обнаружения дефекта.

Изобретение относится к устройству и способу лазерной наплавки покрытия на образец. Осуществляют подачу потока газопорошковой смеси и инертного защитного газа на поверхность образца с одновременным расплавлением газопорошковой смеси лазерным лучом и перемещением образца относительно лазерного луча.

Лазерное устройство (1) включает первый и второй лазерные блоки (2, 3), испускающие лучи (5, 6), распространяющиеся в первом и во втором направлениях, и поляризационное соединительное средство, выполненное как поляризационная соединительная призма (8) и расположенное так, что лазерные лучи первого и второго лазерных блоков, поляризованные в первом и втором направлениях, складываются.

Изобретение относится к головке (1) для лазерной резки листового материала для металлорежущего станка. Головка (1) содержит коллиматор (2), предназначенный для коллимирования лазерного луча, испускаемого устройством лазерного излучения, фокусирующие средства, предназначенные для фокусировки коллимированного лазерного луча, корпус (4), предназначенный для установки и расположения в нем фокусирующих средств, и держатель, предназначенный для установки и удержания фокусирующих средств в полости корпуса (4) и их перемещения вдоль направления (X) регулировки для изменения фокальной точки лазерного луча, выходящего из фокусирующих средств.

Изобретение относится к способу сварки внахлест, нахлесточному сварному соединению, способу изготовления нахлесточного сварного соединения и детали автомобиля, которая содержит нахлесточное соединение.

Изобретение относится к области машиностроения, а в частности к производству металлоизделий из листовых заготовок. В способе сварки тавровой балки лазерным лучом механической и химической обработкой подготавливают металлические листы необходимых размеров в диапазоне (Д×Ш×Т) 1500×100×4 мм до 6000×300×12 мм из сталей обыкновенного качества, или качественных сталей, или прочих конструкционных сплавов.

Изобретение относится к способу лазерной сварки встык по меньшей мере одной заготовки из закаленной под прессом марганцовистой боросодержащей стали. Заготовка (1, 2) имеет толщину от 0,5 до 1,8 мм и/или с перепадом толщины (d) в стыке (3) от 0,2 до 0,4 мм.

Изобретение относится к устройству для лазерно-дуговой сварки стыка сформованной трубной заготовки. Первая электродуговая горелка закреплена на опорной конструкции перед лазерной головкой на расстоянии, при котором в процессе сварки расстояние между центром сфокусированного пятна лазерного луча и точкой дугового контакта упомянутой первой горелки составляет 10-15 мм. Средство для подачи флюса и вторая электродуговая горелка последовательно закреплены на опорной конструкции после лазерной головки, которая закреплена наклонно в сторону направления движения свариваемых кромок с возможностью обеспечения угла 20-25° между формируемым лазерным лучом и нормалью к поверхности свариваемой заготовки с возможностью обеспечения расстояния 50-70 мм между центром сфокусированного на свариваемые кромки пятна лазерного луча и точкой дугового контакта второй горелки. Первая электродуговая горелка наклонена в сторону, противоположную направлению движения свариваемых кромок, на угол 30-35° относительно нормали к поверхности свариваемой заготовки. Ограждение выполнено из вертикальных пластин, жестко соединенных в форме прямоугольной коробки без дна, имеющей ширину от 40 мм до 100 мм и высоту 200 мм, на опорной конструкции с возможностью скольжения по поверхности свариваемой трубной заготовки в процессе выполнения сварки. Электрод второй электродуговой горелки размещен внутри ограждения. Средство для подачи флюса выполнено в виде воронки и ссыпной трубки, присоединенной к выходному отверстию конической части воронки с возможностью направления ее нижнего конца внутрь ограждения под углом к стенке, отделяющей лазерный луч от флюса, и на расстоянии 80 мм от нижней границы упомянутой стенки. Технический результат заключается в оптимизации микроструктуры сварных швов, уменьшении дефектов сварки типа сквозных отверстий, раковин, пор и шлаковых включений, улучшении дегазации сварочной ванны, что позволяет минимизировать или исключить полностью риск образования таких дефектов, как кристаллизационные трещины и поры. 2 з.п. ф-лы, 2 ил.

Изобретение может быть использовано при изготовлении ответственных конструкций из сталей и сплавов сваркой плавлением. С поверхности сварочной проволоки удаляют смазку, проводят промывку, просушку и оплавление поверхности проволоки при ее прямолинейном перемещении. Оплавление осуществляют лазерным лучом с помощью вращающейся относительно оси проволоки лазерной головки. Скорость перемещения обрабатываемой проволоки и скорость вращения лазерной головки выбирают из условия оплавления поверхности проволоки на глубину не менее 0,01 мм по спирали с перекрытием ее ближайших витков. Оплавление проволоки лазерным лучом позволяет получить поверхность, не имеющую дефектов, характерных для волочения, и поверхностных загрязнений. 1 ил.

Изобретение может быть использовано для сварки сформованных трубных заготовок из углеродистой стали диаметром от 530 до 1420 мм с толщиной стенок от 8 до 45 мм. Околошовную зону свариваемого участка трубы нагревают индуктором до и после выполнения сварки до температуры 200-350°С. Выполняют гибридную сварку. Лазерный луч фокусируют на свариваемые кромки трубной заготовки после сварочной дуговой горелки. Расстояние между центром сфокусированного пятна лазерного луча и точкой дугового контакта сварочной горелки составляет 10-15 мм. Лазерный луч наклоняют в сторону направления движения свариваемых кромок на угол 20-25° относительно нормали к поверхности свариваемых кромок, а сварочную дуговую горелку наклоняют в противоположную сторону на угол 30-35°. В процессе сварки подают защитный газ в зону электрода горелки. Температуру повторного нагрева поддерживают до достижения температурой шва вышеуказанной температуры околошовной зоны. Способ обеспечивает контролируемую кристаллизацию металла сваренного шва за счет уменьшения сварочной ванны и выполнения термообработки сваренного шва, улучшение дегазации сварочной ванны, что позволяет минимизировать риск образования кристаллизационных трещин и пор. 1 ил.

Изобретение относится к способу лазерно-дуговой сварки стыка сформованной трубной заготовки из углеродистой стали большого диаметра от 530 до 1420 мм с толщиной стенок от 8 до 45 мм и зазором до 1 мм. На свариваемую поверхность воздействуют гибридной лазерно-дуговой сваркой с плавящимся электродом с образованием единой сварочной ванны. Затем на сформированный первый шов, не остывший до состояния, при котором возникает кристаллизация металла корневого шва, воздействуют сваркой под флюсом. Способ обеспечивает фиксированную ширину и высоту насыпки флюса, в зависимости от ширины шва. Обеспечиваются благоприятные условия кристаллизации сварочной ванны после лазерно-дуговой сварки. Создаются благоприятные условия для выполнения сварки под флюсом с обеспечением гарантированного провара с заполнением зазора между кромками до 1 мм. В результате достигается оптимизация микроструктуры сварных швов, уменьшение дефектов сварки типа сквозных отверстий, раковин, пор и шлаковых включений; улучшение дегазации сварочной ванны как на этапе лазерно-дуговой сварки, так и на этапе сварки под флюсом, что позволяет минимизировать или исключить полностью риск образования таких дефектов, как кристаллизационные трещины и поры. 2 ил.

Изобретение относится к способу лазерно-дуговой сварки стыка заготовок из углеродистой стали с толщиной стенок 10-45мм. На свариваемую поверхность воздействуют расфокусированным первым лазерным лучом. Воздействием первого лазерного луча выполняют оплавление свариваемых кромок до перекрытия зазора между ними с образованием сварочной ванны. Затем воздействуют гибридной лазерно-дуговой сваркой с плавящимся электродом с образованием со вторым лазерным лучом единой сварочной ванны. Расстояние между первым и вторым лазерным лучом составляет 50-70 мм. Сварочную дуговую горелку размещают перед вторым лазерным лучом, который фокусируют на поверхность сварочной ванны. Расстояние между центром сфокусированного пятна второго лазерного луча и точкой дугового контакта составляет 10-15 мм. Второй лазерный луч наклоняют в сторону направления движения свариваемых кромок на угол θ 20-25° относительно нормали к поверхности свариваемой заготовки. Сварочную дуговую горелку наклоняют в сторону, противоположную направлению движения свариваемых кромок на угол ϕ 30-35° относительно нормали к поверхности свариваемой заготовки. В процессе сварки подают защитный газ в зону электрода в одном направлении с электродом сварочной дуговой горелки. Технический результат заключается в обеспечении сдерживания роста твердости сварных швов и в улучшении дегазации сварочной ванны, что позволяет минимизировать или исключить полностью риск образования таких дефектов, как кристаллизационные трещины и поры. 1 ил.
Наверх