Способ повышения критической температуры сверхпроводящего перехода в поверхностном слое высокотемпературного сверхпроводника

Изобретение относится к способам повышения критической температуры сверхпроводящего перехода (Тс) в высокотемпературных сверхпроводниках (ВТСП) и может быть использовано для создания различного рода датчиков и счетчиков в сверхбыстродействующих электронных устройствах, криоэлектронных приборах, детекторов СВЧ и др. На высокотемпературный сверхпроводник наносят слой диэлектрика, поверх которого наносят слой проводника и создают разность потенциалов между сверхпроводником и слоем проводника, соединив их с источником напряжения. Источник напряжения регулируется по величине напряжения. Изобретение обеспечивает повышение критической температуры сверхпроводящего перехода в поверхностном слое высокотемпературного сверхпроводника. 1 з.п. ф-лы.

 

Изобретение относится к способам повышения критической температуры сверхпроводящего перехода (Тс) в высокотемпературных сверхпроводниках (ВТСП) и может быть использовано для создания различного рода датчиков и счетчиков в сверхбыстродействующих электронных устройствах, криоэлектронных приборах, детекторов СВЧ и др.

Известен способ повышения критической температуры сверхпроводящего перехода в ВТСП, заключающейся в допировании(внедрении) носителей заряда в исходное диэлектрическое или металлическое соединение, путем неизовалентного химического замещения отдельных элементов. При этом критическая температура Тс имеет максимум при некоторой оптимальной концентрации носителей. Неизовалентное химическое замещение осуществляется методом интерколирования слоистых ВТСП (Rotter M, Tegel M, Johrendt D. Superconductivityat 38 Kintheironarsenide (Ba1-xKx)Fe2As2 // Phys. Rev. Lett. 101 107006 (2008); Mizuquchi, H. Takeya, Y. Kawasakiatal. Transportpropertiesof the Fe-based superconductor KxFe2Se2 (Tc=33 K) // Appl. Phys. Lett. 2011, V. 98, p. 042511).

Недостатком способа является необходимость интеркалировать щелочные металлы в межслойное пространство слоистых ВТСП, что, во-первых, требует использования растворов щелочных металлов в жидком аммиаке и специального оборудования для его осуществления; во-вторых, слоистые соединения, интеркалированные щелочными металлами, неустойчивы на воздухе.

Наиболее близким способом повышения критической температуры сверхпроводящего перехода в поверхностном слое высокотемпературного сверхпроводника является способ допирования монослоя ВТСП, нанесенного на диэлектрическую подложку SrTiO3. Согласно этому способу формируют структуру ВТСП - диэлектрик SrTiO3, после чего производят отжиг сформированной структуры. Кислородные вакансии, возникающие в подложке SrTiO3 при отжиге, служат источником электронов, которые допируют монослой ВТСП, в результате чего повышается критическая температура сверхпроводящего перехода (Jian-FengGe, Zhi-LongLiu, CanhuaLiu, Chun-LeiGao, DongQian, Qi-KunXue, YingLiu, Jin-FengJia. Superconductivityabove 100 Kinsingle-layerFeSefilmsondopedSrTiO3 // NatureMaterials 14, 285-289, 2015).

Недостатками способа являются: необходимость создания на диэлектрической подложке монослоя ВТСП, что требует специальной технологии, кроме того, сложно добиться оптимальной концентрации носителей, т.е. получить максимально высокую температуру перехода в сверхпроводящее состояние для данного ВТСП. Кроме того, в ряде случаев необходимо исключить операцию отжига.

Задача, на решение которой направлено настоящее изобретение, заключается в создании способа повышения критической температуры сверхпроводящего перехода в поверхностном слое ВТСП без использования специальной операции создания слоя ВТСП на диэлектрической подложке и исключения операции отжига.

Техническим результатом является повышение критической температуры сверхпроводящего перехода в поверхностном слое высокотемпературного сверхпроводника.

Технический результат достигается тем, что в способе повышения критической температуры сверхпроводящего перехода в поверхностном слое высокотемпературного сверхпроводника, включающим формирование структуры высокотемпературный сверхпроводник - диэлектрик, согласно изобретению на высокотемпературный сверхпроводник наносят слой диэлектрика, поверх которого наносят слой проводника и создают разность потенциалов между сверхпроводником и слоем проводника, соединив их с источником напряжения, причем на слой проводника подается положительное напряжение, а на высокотемпературный сверхпроводник - отрицательное. При этом источник напряжения регулируется по величине напряжения.

Разность потенциалов создает злектростатическое поле, под действием которого возрастает концентрация электронов в слое ВТСП, контактирующим с диэлектриком, т.е. происходит допирование электронами поверхностного слоя ВТСП, благодаря чему повышается критическая температура сверхпроводящего перехода этого тонкого слоя, причем концентрация электронов управляется изменением величиной подаваемого напряжения.

Пример

На образец из FeSe, являющимся ВТСП, размером 5 мм × 5 мм и толщиной 2 мм были нанесены токовые и потенциальные контакты из золота (для фиксации сверхпроводящего перехода в тонком поверхностном слое образца). Поверх токовых и потенциальных контактов нанесена пленка диэлектрика из парилена толщиной около 1 мкм. Далее поверх пленки из парилена нанесена тонкая пленка из серебра (от 0,5 мкм до 1 мкм). Между образцом и серебряной пленкой прикладывается постоянное напряжение от 1 до 10 В. В результате величина Тс образца FeSe повышалась с 8 до 12 К в зависимости от поданного напряжения.

1. Способ повышения критической температуры сверхпроводящего перехода в поверхностном слое высокотемпературного сверхпроводника, включающий формирование структуры высокотемпературный сверхпроводник - диэлектрик, отличающийся тем, что на высокотемпературный сверхпроводник наносят слой диэлектрика, поверх которого наносят слой проводника и создают разность потенциалов между сверхпроводником и слоем проводника, соединив их с источником напряжения, причем на слой проводника подается положительное напряжение, а на высокотемпературный сверхпроводник - отрицательное.

2. Способ по п. 1, отличающийся тем, что источник напряжения регулируется по величине напряжения.



 

Похожие патенты:

Изобретение относится к электротехнике, к многослойным магнитным блокам из высокотемпературных сверхпроводящих лент второго поколения и может быть использовано при промышленном производстве устройств для магнитной левитации, экранов магнитного поля, постоянных магнитов захваченного магнитного потока и компонентов роторов электрических машин и т.д.

Изобретение относится к созданию новых высокотемпературных сверхпроводящих (ВТСП) материалов и позволяет получить материал, обладающий сверхпроводимостью при температуре 197 К.

Изобретение относится к области изготовления сверхпроводящих магнитных систем различного назначения. Способ получения многоволоконной заготовки для изготовления сверхпроводящего провода на основе соединения Nb3Sn заключается в формировании первичной многоволоконной заготовки путем размещения в чехле из сплава Cu-Sn Nb-содержащих прутков, объединенных в блоки путем размещения между ними прутков из сплава Cu-Sn, а толщину стенки чехла первичной многоволоконной заготовки выбирают в интервале 0,5-0,8 минимального расстояния между ближайшими Nb-содержащими прутками, не принадлежащими одному блоку, которую деформируют, и формируют многоволоконную заготовку путем размещения прутков, полученных из первичной многоволоконной заготовки, в чехле из меди или сплава Cu-Sn, при этом Nb-содержащий пруток выполняют с размещенным вдоль его центральной оси легирующим вкладышем из сплава Ti-Sn, содержащим олово в количестве от 3 до 15 мас.%, а степень разовой деформации при деформировании первичной многоволоконной заготовки волочением не превышает 20%.

Изобретение относится к технологии получения сверхпроводящих материалов и может быть использовано в электротехнической промышленности и других отраслях науки и техники при изготовлении сверхпроводящих магнитных систем различного назначения.

Изобретение относится к области производства сверхпроводящих материалов и может быть использовано в электротехнической промышленности и других отраслях техники для изготовления сверхпроводящих магнитных систем различного назначения.

Способ относится к электротехнике и может быть использован при конструировании и изготовлении сверхпроводящих проводов на основе соединения Nb3Sn для сверхпроводящих магнитных систем энергетических установок термоядерного синтеза.

Изобретение относится к электротехнике и может быть использовано при конструировании и изготовлении сверхпроводящих проводов на основе соединения Nb3Sn для установок термоядерного синтеза, импульсных магнитных систем или для других перспективных технологий, в которых требуются сверхпроводники с повышенной критической плотностью тока.

Изобретение относится к способу охлаждения по меньшей мере одного сверхпроводящего кабеля, установленного в имеющем по меньшей мере одну термически изолированную трубу криостате с охваченным трубой свободным пространством, в котором установлены кабель и по меньшей мере одно трубчатое устройство, через которое из находящейся на одном конце точки подачи до отдаленного конца пропускается охлаждающее средство.

Изобретение относится к технологии высокотемпературных ленточных сверхпроводников на основе смешанных оксидов иттрия-бария-меди (YBCO) и может быть использовано при конструировании и изготовлении высокотемпературных сверхпроводящих проводов второго поколения, в частности в импульсных магнитных системах или в других установках, в которых требуются сверхпроводники с высокой механической прочностью.

Изобретение относится к области сверхпроводимости и нанотехнологий, а именно к способу получения и обработки композитных материалов на основе высокотемпературных сверхпроводников (BTCП), которые могут быть использованы в устройствах передачи электроэнергии, для создания токоограничителей, трансформаторов, мощных магнитных систем.
Наверх