Магнитолокация с использованием множества скважинных электродов

Изобретение относится к бурению сближенных скважин и может быть применено для определения расстояния между скважинами. Техническим результатом является расширение арсенала технических средств. В частности, предложена система магнитной дальнометрии, содержащая: ствол скважины в пласте; проводящую обсадную колонну в указанном стволе скважины; и электрод возбуждения и обратный электрод в указанном стволе скважины, электрически соединенные с проводящей обсадной колонной. Причем электрод возбуждения расположен в скважине ниже обратного электрода. Электрод возбуждения и обратный электрод генерируют ток в обсадной колонне, который приводит к возникновению электромагнитного сигнала, распространяющегося через указанный пласт к датчику в другой скважине. 3 н. и 17 з.п. ф-лы, 12 ил.

 

УРОВЕНЬ ТЕХНИКИ

В пределах одного пласта часто бурят несколько скважин. Как правило, желательно контролировать расстояние между соседними скважинами (такой процесс называется «локацией») при бурении одной или нескольких скважин, чтобы предотвратить вероятность их отрицательного взаимодействия. Без такого мониторинга смежные скважины могут, например, пересекаться, или может оказаться, что они пробурены так близко друг к другу, что последующие операции гидроразрыва вызывают нежелательные взаимодействия между скважинами. Указанное измерение расстояний между скважинами может обеспечивать дополнительные преимущества.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Соответственно, в приведенном описании и на чертежах представлен способ магнитной дальнометрии с использованием множества скважинных электродов. На чертежах:

на Фиг. 1 схематически изображен способ магнитной дальнометрии;

на Фиг. 2 приведен график, показывающий распределение тока в обсадной колонне в зависимости от расположения электрода;

на Фиг. 3 схематически изображена скважина, содержащая множество электродов для магнитной дальнометрии;

на Фиг. 4 схематически изображена еще одна скважина, содержащая множество электродов для магнитной дальнометрии;

на Фиг. 5 схематически изображена еще одна скважина, содержащая множество электродов для магнитной дальнометрии;

на Фиг. 6 приведен вид в поперечном сечении обратного электрода, имеющего отверстие, через которое может проходить провод электрода возбуждения;

на Фиг. 7A приведен вид сбоку обратного электрода, имеющего соединительное устройство, через которое может проходить провод электрода возбуждения;

на Фиг. 7В приведен вид сверху обратного электрода и соединительного устройства согласно Фиг. 7А;

на Фиг. 8А схематически изображен проводниковый зонд, имеющий электроды, которые электрически соединены с обсадной колонной скважины с помощью листовой пружины;

на Фиг. 8B схематически изображен проводниковый зонд, имеющий электроды, которые электрически соединены с обсадной колонной скважины с помощью выдвижного рычага;

на Фиг. 8C схематически изображен проводниковый зонд, имеющий электроды, которые опираются на обсадную колонну скважины в наклонной секции скважины;

на Фиг. 9 приведена блок-схема способа магнитной дальнометрии.

Однако следует понимать, что конкретные варианты реализации изобретения, приведенные на чертежах и подробно раскрытые в данном описании, не ограничивают настоящее изобретение. Напротив, они предоставляют специалисту в данной области с обычным уровнем подготовки основу для определения альтернативных форм, эквивалентов и модификаций, которые охватываются одним или несколькими из приведенных вариантов реализации изобретения в объеме прилагаемой формулы изобретения.

ОПИСАНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ

Настоящее изобретение относится к различным способам магнитной дальнометрии, в которых для создания возбуждения в обсадной колонне используется множество скважинных электродов. По меньшей мере в некоторых вариантах реализации изобретения, например, пара электродов расположена внутри ствола скважины, так что они электрически соединяются с обсадной колонной, причем электрод возбуждения расположен в скважине дальше, чем обратный электрод. Ток подается на обсадную колонну между электродами, что приводит к созданию электромагнитного поля, обнаруживаемого датчиками в одной или нескольких соседних скважинах и используемого для определения расстояния между скважинами. Расстояние между электродами может быть точно отрегулировано для достижения требуемого профиля распределения тока по длине обсадной колонны, например, минимального тока на поверхности для обеспечения необходимой безопасности и достаточного тока во всей остальной части обсадной колонны для создания электромагнитного поля, имеющего требуемое распределение. Размещение обратного электрода в стволе скважины также устраняет необходимость в установке обратного электрода в землю на поверхности, в нескольких сотнях метров от скважины. Это повышает безопасность персонала и оборудования, поскольку такие обратные электроды на поверхности часто подключают к наземному оборудованию на устье скважины через пересеченную и потенциально опасную местность, например, густые леса и заболоченные участки.

На Фиг. 1 схематически изображен способ магнитной дальнометрии. Система магнитной дальнометрии 100 содержит множество стволов скважин 102, 104, пробуренных в пласте 106. Ствол скважины 102 уже завершен и обсажен, а ствол скважины 104 либо завершен, либо находится в процессе бурения. Ствол скважины 102 содержит электрод возбуждения 110 и обратный электрод 112. По меньшей мере в некоторых вариантах реализации изобретения электрод возбуждения расположен ниже в скважине относительно обратного электрода, хотя также возможно и обратное расположение. Оба электрода 110, 112 соединены с источником 108 питания, расположенным на поверхности (например, на грузовике с оборудованием или в другом подходящем объекте на поверхности) или в скважине (например, в зонде). Источник электропитания 108 может обеспечивать протекание тока через электрод возбуждения 110, в т.ч. постоянного (DC) или переменного тока (AC) с относительно низкой частотой (например, 20 Гц или меньше) или более высокими частотами (например, от немногим более 20 Гц до 200 Гц, включительно). Электроды 110, 112 соединяются с обсадной колонной скважины 114 и создают в ней возбуждение, как описано ниже. В стволе скважины 102 внутри обсадной колонны 114 обычно содержится грязь 116. Ствол скважины 104 содержит один или несколько датчиков 120. Положения датчиков 120 зависят, по меньшей мере частично, от состояния ствола скважины 104. При бурении скважины 104 датчики 120 могут быть расположены в бурильной колонне (например, в компоновке низа бурильной колонны). Если ствол скважины 104 завершен, датчики 120 могут быть расположены в тросовом инструменте, на обсадной колонне, в цементной оболочке или какой-либо их комбинации. Возможны и другие положения датчиков 120, и они включены в объем настоящего изобретения. Поскольку расположение датчиков 120 является переменным, на Фиг. 1 не отражен какой-либо конкретный тип скважинного оборудования в стволе скважины 104.

В процессе работы электрод возбуждения 110 и обратный электрод 112 индуцируют ток в обсадной колонне 114. Поскольку электрод 112 является обратным, большая часть тока проходит от электрода возбуждения 110 к обратному электроду 112, и меньшая часть тока течет вниз по скважине от электрода возбуждения 110. Если электроды 110, 112 расположены слишком близко друг к другу (например, на расстоянии менее 50 метров), почти весь ток проходит к обратному электроду 112, и очень малая часть тока течет вниз по скважине от электрода возбуждения 110. Это является нежелательным, поскольку недостаточный ток, протекающий ниже электрода возбуждения 110, приводит к образованию недостаточного для измерения расстояния электромагнитного поля. Если электроды 110, 112 расположены дальше друг от друга (например, на расстоянии 100 м или более), большая часть тока в обсадной колонне 114 все еще протекает между электродами, но большая часть тока течет вниз по скважине от электрода возбуждения 110. Дополнительный ток вниз по скважине от электрода возбуждения 110 приводит к созданию электромагнитного поля 118, подходящего для магнитной дальнометрии, поскольку оно более равномерно распределено по длине ствола скважины 102, чем в случае, когда электроды расположены ближе друг к другу. Затем датчики 120 обнаруживают поле 118 и используют обнаруженные электромагнитные сигналы для определения расстояния между стволами скважин 102, 104.

На Фиг. 2 приведен график 200, показывающий распределение тока в обсадной колонне в зависимости от расположения электрода. Ось Х 202 обозначает скважинное расстояние вдоль обсадной колонны, измеренное от поверхности, а ось Y 204 - нормализованный ток. Кривая 206 представляет схему размещения электродов, в которой электрод возбуждения расположен в стволе скважины вблизи поверхности, а обратный электрод установлен в землю на поверхности, примерно на расстоянии 100 м от скважины. Как показывает кривая 206, ток является значительным на поверхности и уменьшается почти линейно по мере увеличения расстояния вдоль обсадной колонны с резким падением на конце скважины. Такое распределение тока не является оптимальным из-за чрезмерного тока вблизи поверхности (что создает угрозу безопасности) и относительно низкого уровня тока, протекающего у конца обсадной колонны. Кривые 208, 210, 212 соответствуют электродам, расположенным в соответствии с вариантами реализации изобретения. В частности, кривая 208 представляет схему размещения электродов, в которой электрод возбуждения расположен в скважине на глубине 500 м, а обратный электрод - на глубине 400 м, т.е. их разделяет расстояние 100 м. Кривая 210 представляет схему размещения электродов, в которой электрод возбуждения расположен в скважине на глубине 500 м, а обратный электрод - на глубине 300 м, т.е. их разделяет расстояние 200 м. Наконец, кривая 212 соответствует схеме размещения электродов, в которой электрод возбуждения расположен в скважине на глубине 500 м, а обратный электрод - на глубине 100 м, т.е. их разделяет расстояние 400 м.

Каждая из кривых 208, 210, 212 имеет область с большим током между точками вдоль обсадной колонны, на которой размещены электроды. Эти области большого тока существуют, потому что большая часть тока, подаваемого на обсадную трубу с помощью электрода возбуждения, течет непосредственно в обратный электрод. Однако вдоль участков обсадной колонны выше обратных электродов кривые 208, 210, 212 указывают на резкое падение тока. Это связано с тем, что электрод возбуждения находится дальше по глубине скважины от поверхности, чем в случае кривой 206, а также потому, что обратный электрод находится внутри ствола скважины (в то время, как в случае кривой 206, он установлен на поверхности земли). Указанное падение тока на кривых 208, 210, 212 является желательным, поскольку оно уменьшает проблемы безопасности для оборудования и персонала на поверхности или вблизи нее. Чем ближе обратный электрод к поверхности, тем больше ток вблизи поверхности, как показано на кривых 208, 210, 212. Кроме того, кривые 208, 210, 212 демонстрируют общее увеличение уровня тока вдоль обсадной колонны вниз по скважине от электрода возбуждения. Как показывает ход кривых 208, 210, 212, чем больше расстояние между электродами, тем меньший ток течет к обратному электроду и тем больший ток течет в скважину в направлении к ее концу. Объем изобретения не ограничивается конкретными вариантами размещения электродов, показанными на Фиг. 2, и на Фиг. 2 не представлены все профили распределения тока во всех скважинах. Электроды могут быть размещены вдоль обсадной колонны требуемым образом и могут быть точно настроены для достижения требуемого профиля распределения тока и создания требуемого электромагнитного поля. Например, в некоторых вариантах реализации изобретения расстояние между обратным электродом и электродом возбуждения больше, чем другое расстояние между электродом возбуждения и забойным концом обсадной колонны. В других вариантах реализации изобретения верно обратное. Кроме того, Фиг. 2 является лишь иллюстративной в том смысле, что электроды, расположенные точно так, как показано на Фиг. 2, но в другой скважине с иными физическими характеристиками могут обеспечить другие профили распределения тока.

На Фиг. 3 схематически изображена скважина, содержащая множество электродов для магнитной дальнометрии. В частности, на Фиг. 3 изображена среда бурения 300, включающая грузовик с оборудованием 302; наземное оборудование 303; изолированный проводящий кабель 304, который электрически соединен с обратным электродом 306; и изолированный проводящий кабель 308, который электрически соединен с электродом возбуждения 310. Электроды 306, 310 электрически соединены с проводящей обсадной колонной 314. Кабели 304, 308 и электроды 306, 310 расположены в стволе скважины 312 (пробуренной внутри пласта 311) с использованием шкивной системы 316 грузовика с оборудованием 302. Также возможно использование других систем для опускания кабелей 304, 308 и электродов 306, 310 в ствол скважины 312. По меньшей мере в некоторых вариантах реализации изобретения электроды 306, 310 сбрасывают в место отказа. По меньшей мере в некоторых вариантах реализации изобретения один или несколько электродов 306, 310 расположены на наклонном участке ствола скважины 312 или в пределах 100 м от него. Возможны также другие положения электродов или способы их размещения.

В процессе работы наземное оборудование 303, которое включает источник питания (в частности, источник тока), подает ток в обсадную колонну 314 через электрод возбуждения 310. Большая часть этого тока течет к обратному электроду 306 и обратно к наземному оборудованию 303. По меньшей мере часть тока протекает мимо обратного электрода 306 к поверхности и по меньшей мере часть тока течет вниз по скважине от электрода возбуждения 310. Независимо от направления протекания тока ток в обсадной колонне 314 вызывает появление электромагнитного поля (также называемого здесь «электромагнитными сигналами») в пласте 311. Датчики, связанные с соседней скважиной (не показаны конкретно), могут затем обнаруживать электромагнитные сигналы и использовать сигналы для выполнения операции определения расстояния между скважинами.

На Фиг. 4 схематически изображена еще одна скважина, содержащая множество электродов для магнитной дальнометрии. Фиг. 4 аналогична Фиг. 3, за исключением того, как кабели соединяют электроды с наземным оборудованием и между собой. На Фиг. 4 изображена среда бурения 400, включающая грузовик с оборудованием 402; наземное оборудование 403; изолированный проводящий кабель 404, который электрически соединен с обратным электродом 406; и изолированный проводящий кабель 408, который электрически соединен с электродом возбуждения 410 и механически соединен с электродом 406. Электроды 406, 410 электрически соединены с обсадной колонной 414. Кабели 404, 408 и электроды 406, 410 расположены в стволе скважины 412 (пробуренной внутри пласта 411) с использованием шкивной системы 416 грузовика с оборудованием 402. Также возможно использование других систем для опускания кабелей 404, 408 и электродов 406, 410 в ствол скважины 412. По меньшей мере в некоторых вариантах реализации изобретения электроды 406, 410 сбрасывают в место отказа. По меньшей мере в некоторых вариантах реализации изобретения один или несколько электродов 406, 410 расположены на наклонном участке ствола скважины 412 или в пределах 100 м от него. Возможны также другие положения электродов или способы их размещения. Провод 408 механически соединен с электродом 406, чтобы уменьшить вероятность или по меньшей мере последствия переплетения кабелей электродов 404, 408. Иллюстративные способы указанных механических соединений описаны ниже в связи с Фиг. 6–7 В. Работа электрической части системы, показанной на Фиг. 4, аналогична работе системы, показанной на Фиг. 3.

На Фиг. 5 схематически изображена еще одна скважина, содержащая множество электродов для магнитной дальнометрии. Фиг. 5 аналогична Фиг. 3 и 4, за исключением того, как кабели соединяют электроды с наземным оборудованием и между собой. На Фиг. 5 изображена среда бурения 500, включающая грузовик с оборудованием 502; наземное оборудование 503; изолированный проводящий кабель 504, который электрически соединен с обратным электродом 506; и изолированный проводящий кабель 508, который электрически соединен с электродом возбуждения 510 и механически соединен с электродом 506. Электроды 506, 510 электрически соединены с обсадной колонной 514. Кабели 504, 508 и электроды 506, 510 расположены в стволе скважины 512 (пробуренной внутри пласта 511) с использованием шкивной системы 516 грузовика с оборудованием 502. Также возможно использование других систем для опускания кабелей 504, 508 и электродов 506, 510 в ствол скважины 512. По меньшей мере в некоторых вариантах реализации изобретения электроды 506, 510 сбрасывают в место отказа. По меньшей мере в некоторых вариантах реализации изобретения один или несколько электродов 506, 510 расположены на наклонном участке ствола скважины 512 или в пределах 100 м от него. Возможны также другие положения электродов или способы их размещения. Провода 504, 508 переплетены между собой от поверхности до электрода 506. На электроде 506 кабель 504 электрически соединен с электродом 506, кабель 508 механически соединен с электродом 506. Кабель 508 проходит мимо электрода 506 и электрически соединен с электродом 510. Иллюстративные способы указанных механических соединений описаны ниже в соответствии с Фиг. 6–7В. Работа электрической части системы, показанной на Фиг. 5, аналогична работе систем, показанных на Фиг. 3 и 4.

На Фиг. 6–7 В показана механическая связь между обратным электродом и кабелем, питающим электрод возбуждения, как указано выше. На Фиг. 6 приведен вид в поперечном сечении обратного электрода, имеющего отверстие, через которое может проходить провод электрода возбуждения. В частности, иллюстративная система 600 содержит обратный электрод 602; изолированную оболочку 604; изолированные проводящие кабели 606, 608; и отверстие 610, образованное в осевом направлении через электрод 602. Хотя иллюстративные системы на Фиг. 3–5 не содержат изолированную оболочку, как система 600, оболочка 604 включена в систему 600, чтобы показать другой иллюстративный вариант реализации изобретения для предотвращения переплетения кабелей. Кабели 606, 608 электрически соединены с источником питания в наземном оборудовании. Кабель 606 электрически соединен с обратным электродом 602, а кабель 608 механически соединен с обратным электродом 602 в том смысле, что он проходит через отверстие 610, выполненное внутри электрода 602. По меньшей мере в некоторых вариантах реализации изобретения отверстие 610 достаточно узкое, для того чтобы оно зажимало и предотвращало перемещение кабеля 608 внутри отверстия 610. После прохождения через отверстие 610 кабель 608 продолжается до электрического соединения с электродом возбуждения.

На Фиг. 7A приведен вид сбоку обратного электрода, имеющего соединительное устройство, через которое может проходить провод электрода возбуждения. В частности, иллюстративная система 700 содержит обратный электрод 702; изолированные проводящие кабели 704, 706; и соединительное устройство 708, внешнее относительно обратного электрода 702. В некоторых вариантах реализации изобретения соединительное устройство 708 представляет собой цилиндрический канал, который проходит длину электрода 702, хотя устройство 708 может иметь любую подходящую форму и длину. Кабели 704, 706 электрически соединены с источником тока на поверхности. Кабель 704 электрически соединен с обратным электродом 702, и кабель 706 механически соединен с обратным электродом 702 в том смысле, что он проходит через соединительное устройство 708, которое прикреплено к обратному электроду 702. По меньшей мере в некоторых вариантах реализации изобретения соединительное устройство 708 является достаточно узким, для того чтобы зажимать и препятствовать перемещению кабеля 708 внутри устройства 708. На Фиг. 7В изображен вид сверху обратного электрода 702 и соединительного устройства 708. Кабель 704 электрически соединен с обратным электродом 702 в точке 710, а кабель 706 проходит через соединительное устройство 708.

На Фиг. 8А схематически изображен проводниковый зонд, имеющий электроды, которые электрически соединены с обсадной колонной скважины с помощью листовой пружины. Иллюстративная система 800 содержит зонд 802, подвешенный в стволе скважины 804 на тросе 806. Зонд 802 содержит обратный электрод 808 и электрод возбуждения 810, который по меньшей мере в некоторых вариантах реализации изобретения, расположен вровень с наружной поверхностью зонда 802. Зонд соединен с непроводящей листовой пружиной 814, упирающейся в обсадную колонну 812 с противоположной стороны обсадной колонны 812 обращенной к электродам 808, 810. Таким образом, электроды 808, 810 имеют электрический контакт с обсадной колонной 812. Корпус зонда 802 предпочтительно изолирован для предотвращения утечки тока из обсадной колонны 812. Работа электрической части системы 800 аналогична работе систем, показанных на Фиг. 3–5.

На Фиг. 8B схематически изображен проводниковый зонд, имеющий электроды, которые электрически соединены с обсадной колонной скважины с помощью выдвижного рычага. Иллюстративная система 850 аналогична системе 800 согласно Фиг. 8А, за исключением того, что для прижатия электродов 808, 810 к обсадной колонне 812 вместо листовой пружины 814 используется изолированный выдвижной рычаг 852.

На Фиг. 8C схематически изображен проводниковый зонд, имеющий электроды, которые опираются на обсадную колонну скважины в наклонной секции скважины. Иллюстративная система 870 содержит изолированный зонд 872, расположенный в стволе скважины 874 с использованием троса 876. Зонд 872 содержит обратный электрод 878 и электрод возбуждения 880, которые в некоторых вариантах реализации изобретения выполнены вровень с поверхностью зонда 872, хотя объем изобретения не ограничивается таким решением. Электроды 878, 880 имеют электрический контакт с обсадной колонной 882 за счет силы тяжести, без использования пружин или рычагов.

Различные конфигурации, рассмотренные выше со ссылкой на Фиг. 3–8C, являются только иллюстративными. Они могут быть изменены требуемым образом. Например, изолированная оболочка 604, показанная на Фиг. 6, может быть выполнена с возможностью использования в одном или нескольких вариантах реализации изобретения, изображенных на Фиг. 3–5 и 7–8С. Аналогично, переплетенные провода, показанные на Фиг. 5, могут быть выполнены с возможностью использования в любом из описанных здесь вариантов реализации изобретения. В другом примере один или несколько описанных выше вариантов реализации изобретения могут содержать изолирующий зазор, расположенный в обсадной колонне между электродом возбуждения и обратным электродом. В таких вариантах реализации изобретения больший ток течет по скважине в направлении к концу скважины, чем в аналогичной конфигурации без указанного зазора. Ток может все еще течь к обратному электроду, но он будет направляться через соседний пласт, имеющий более высокое удельное сопротивление, чем обсадная колонна. Все такие варианты и комбинации входят в объем настоящего изобретения.

На Фиг. 9 приведена блок-схема способа магнитной дальнометрии 900. Способ 900 начинается с размещения пары электродов - электрода возбуждения и обратного электрода - внутри первого ствола скважины и электрического соединения электродов с обсадной колонной (этап 902). Затем способ 900 включает генерирование тока в обсадной колонне с использованием электродов (этап 904). Способ 900 дополнительно включает генерирование электромагнитного сигнала в результате протекания тока в обсадной колонне (этап 906). Электромагнитный сигнал детектируется одним или несколькими датчиками во втором стволе скважины (этап 908), а затем обнаруженные сигналы используются для определения расстояния между первым и вторым стволами скважины (этап 910). Способ 900 может быть модифицирован необходимым образом путем добавления, удаления, перестановки или изменения одного или нескольких этапов.

Различные другие варианты и модификации будут очевидны для специалистов в данной области техники из приведенного выше описания. Пункты прилагаемой формулы изобретения должны интерпретироваться таким образом, чтобы они охватывали все такие варианты, модификации и эквиваленты. Кроме того, термин «или» следует толковать в инклюзивном смысле.

По меньшей мере некоторые варианты реализации изобретения относятся к системе магнитной дальнометрии, содержащей: ствол скважины в пласте; проводящую обсадную колонну в указанном стволе скважины; электрод возбуждения и обратный электрод, электрически соединенные с проводящей обсадной колонной, причем электрод возбуждения расположен в скважине ниже обратного электрода, электрод возбуждения и обратный электрод генерируют ток в обсадной колонне, причем указанный ток приводит к возникновению электромагнитного сигнала, распространяющегося через указанный пласт к датчику в другой скважине. Множество таких вариантов реализации изобретения может включать в себя одну или несколько из следующих концепций, в любом порядке и в любой комбинации: обратный электрод соединен с наземным оборудованием с использованием первого кабеля, а электрод возбуждения соединен с наземным оборудованием с использованием второго кабеля; по меньшей мере части первого и второго кабелей совместно расположены в одной изолированной оболочке; по меньшей мере части первого и второго кабелей переплетены; второй кабель механически соединен с обратным электродом; второй кабель механически соединен с обратным электродом с использованием соединительного устройства, внешнего по отношению к указанному обратному электроду; второй кабель механически соединен с обратным электродом, проходя через отверстие в указанном обратном электроде; ток представляет собой постоянный ток или переменный ток, имеющий частоту свыше 0 Гц и меньшую или равную 200 Гц; система использует электромагнитный сигнал для определения расстояния между стволом скважины и другим стволом скважины; расстояние между обратным электродом и электродом возбуждения больше, чем другое расстояние между электродом возбуждения и забойным концом указанной обсадной колонны.

По меньшей мере некоторые варианты реализации изобретения относятся к системе для осуществления магнитной дальнометрии, содержащей: первый ствол скважины, имеющий проводящую обсадную колонну; электрод возбуждения и обратный электрод, расположенные внутри указанного первого ствола скважины и электрически соединенные с указанной проводящей обсадной колонной, причем электрод возбуждения и обратный электрод используются для генерирования тока в обсадной колонне; и второй ствол скважины, имеющий один или несколько датчиков, причем ток генерирует электромагнитный сигнал в пласте между первым и вторым стволами скважин, причем один или несколько датчиков принимают электромагнитный сигнал, а система использует принятый электромагнитный сигнал для определения расстояния между первым и вторым стволами скважин. Множество таких вариантов реализации изобретения может включать в себя одну или несколько из следующих концепций, в любом порядке и в любой комбинации: электрод возбуждения и обратный электрод расположены на проводном зонде, и в указанном зонде используется листовая пружина или выдвижной рычаг для обеспечения электрического соединения между электродом возбуждения и проводящей обсадной колонной и между обратным электродом и проводящей обсадной колонной; электрод возбуждения и обратный электрод соединены с наземным оборудованием с использованием первого и второго кабелей, соответственно; второй кабель переплетен по меньшей мере с частью первого кабеля; первый кабель проходит через отверстие в обратном электроде; первый кабель механически соединен с обратным электродом с использованием соединительного устройства, внешнего по отношению к обратному электроду.

По меньшей мере, некоторые варианты реализации изобретения относятся к способу магнитной дальнометрии, включающему следующие этапы: расположение пары электродов внутри первого ствола скважины для электрического соединения с обсадной колонной указанного первого ствола скважины; генерирование тока в обсадной колонне с использованием пары электродов, причем указанный ток генерирует электромагнитный сигнал в пласте между первым стволом скважины и вторым стволом скважины; прием указанного электромагнитного сигнала во втором стволе скважины; и использование указанного принятого электромагнитного сигнала для определения расстояния между первым и вторым стволами скважин. Один или несколько из этих вариантов реализации изобретения могут быть модифицированы с использованием любой из следующих концепций, в любом порядке и в любой комбинации: причем расположение указанной пары электродов включает сброс по меньшей мере одного из указанных электродов в место отказа; дополнительно включающий регулирование расстояния между электродами в указанной паре для изменения величины тока, протекающего к забойному концу указанного первого ствола скважины; дополнительно включающий расположение изолирующего зазора в обсадной колонне между парой электродов.

1. Система магнитной дальнометрии, содержащая: ствол скважины в пласте; проводящую обсадную колонну в указанном стволе скважины; и электрод возбуждения и обратный электрод в указанном стволе скважины, электрически соединенные с проводящей обсадной колонной, причем электрод возбуждения расположен в скважине ниже обратного электрода, электрод возбуждения и обратный электрод генерируют ток в обсадной колонне, который приводит к возникновению электромагнитного сигнала, распространяющегося через указанный пласт к датчику в другой скважине.

2. Система по п. 1, отличающаяся тем, что обратный электрод соединен с наземным оборудованием с использованием первого кабеля, а электрод возбуждения соединен с наземным оборудованием с использованием второго кабеля.

3. Система по п. 2, отличающаяся тем, что по меньшей мере части первого и второго кабелей совместно расположены в одной изолированной оболочке.

4. Система по п. 2, отличающаяся тем, что по меньшей мере части первого и второго кабелей переплетены.

5. Система по п. 2, отличающаяся тем, что второй кабель механически соединен с обратным электродом.

6. Система по п. 5, отличающаяся тем, что второй кабель механически соединен с обратным электродом с использованием соединительного устройства, внешнего по отношению к указанному обратному электроду.

7. Система по п. 5, отличающаяся тем, что второй кабель механически соединен с обратным электродом, проходя через отверстие в указанном обратном электроде.

8. Система по любому из пп. 1–7, отличающаяся тем, что ток представляет собой постоянный ток или переменный ток, имеющий частоту свыше 0 Гц и меньшую или равную 200 Гц.

9. Система по любому из пп. 1–7, отличающаяся тем, что система использует электромагнитный сигнал для определения расстояния между стволом скважины и указанным стволом другой скважины.

10. Система по любому из пп. 1–7, отличающаяся тем, что расстояние между обратным электродом и электродом возбуждения больше, чем другое расстояние между электродом возбуждения и забойным концом указанной обсадной колонны.

11. Система для осуществления магнитной дальнометрии, содержащая: первый ствол скважины, имеющий проводящую обсадную колонну;

электрод возбуждения и обратный электрод, расположенные внутри указанного первого ствола скважины и электрически соединенные с указанной проводящим обсадной колонной, причем электрод возбуждения и обратный электрод используются для генерации тока в обсадной колонне; и второй ствол скважины, имеющий один или несколько датчиков,

причем ток генерирует электромагнитный сигнал в пласте между первым и вторым стволами скважин, причем один или несколько датчиков принимают электромагнитный сигнал, а

система использует принятый электромагнитный сигнал для определения расстояния между первым и вторым стволами скважин.

12. Система по п. 11, отличающаяся тем, что электрод возбуждения и обратный электрод расположены на проводном зонде и в указанном зонде используется листовая пружина или выдвижной рычаг для обеспечения электрического соединения между электродом возбуждения и проводящей обсадной колонной, а также между обратным электродом и проводящей обсадной колонной.

13. Система по п. 11, отличающаяся тем, что электрод возбуждения и обратный электрод соединены с наземным оборудованием с использованием первого и второго кабелей соответственно.

14. Система по п. 13, отличающаяся тем, что второй кабель переплетен по меньшей мере с частью первого кабеля.

15. Система по п. 14, отличающаяся тем, что первый кабель проходит через отверстие в обратном электроде.

16. Система по п. 14, отличающаяся тем, что первый кабель механически соединен с обратным электродом с использованием соединительного устройства, внешнего по отношению к обратному электроду.

17. Способ магнитной дальнометрии, включающий:

расположение пары электродов внутри первого ствола скважины для электрического соединения с обсадной колонной указанного первого ствола скважины;

генерирование тока в обсадной колонне с использованием пары электродов, причем указанный ток генерирует электромагнитный сигнал в пласте между первым стволом скважины и вторым стволом скважины;

прием указанного электромагнитного сигнала во втором стволе скважины; и

использование указанного принятого электромагнитного сигнала для определения расстояния между первым и вторым стволами скважин.

18. Способ по п. 17, отличающийся тем, что расположение указанной пары электродов включает сброс по меньшей мере одного из указанных электродов в место отказа.

19. Способ по п. 17, дополнительно включающий регулирование расстояния между электродами в указанной паре для изменения величины тока, протекающего к забойному концу указанного первого ствола скважины.

20. Способ по любому из пп. 17–19, дополнительно включающий установку изолирующего зазора в обсадной колонне между парой электродов.



 

Похожие патенты:

Изобретение относится к области измерения температуры посредством термометрических электрических датчиков и предназначено для одновременного измерения и регистрации значений температуры грунтов в нескольких точках объекта в зависимости от его конструкции, в частности в термометрических скважинах любого типа в полевых условиях, проведения стационарных и лабораторных исследований температурного режима талых, мерзлых, охлажденных и промерзающих/оттаивающих грунтов, организации сети для мониторинга теплового режима грунтов с большим количеством точек наблюдения, в том числе в пожаро-, взрывоопасных и агрессивных средах.

Изобретения относятся к метрологии, в частности к средствам контроля формы и размеров подземных хранилищ газа. Звуколокатор содержит узел контроля высоты h положения звуколокатора и цилиндрический корпус, состоящий из трех последовательно установленных частей.

Изобретение относится к метрологии, в частности к устройствам для контроля формы и размеров подземных хранилищ газа. Способ исследования геометрических параметров каверны подземного хранилища газа с установленной в ней насосно-компрессорной трубой с помощью ультразвукового сканирующего звуколокатора заключается в облучении ультразвуковыми зондирующими импульсами стенок исследуемой каверны в горизонтальных и наклонных плоскостях на различных глубинах каверны, заполненной рабочей жидкостью, и последующем измерении времен распространения зондирующими импульсами двойного расстояния от стенок каверны до приемо-передающего электроакустического преобразователя звуколокатора, по которым определяют геометрические размеры и форму каверны.

Изобретение относится к бурению сближенных скважин и может быть использовано для обнаружения одной скважины при сооружении другой. Техническим результатом является расширение арсенала технических средств для обнаружения расположения скважин относительно друг друга.

Изобретение относится к геофизическим исследованиям скважин и может найти применение для определения тепловых свойств пластов горных пород, окружающих скважины. Технический результат заключается в обеспечении возможности одновременного определения теплопроводности пород и радиуса скважины, используя результаты измерения температуры в скважине во время гидратации цемента.
Изобретение относится к области добычи полезных ископаемых, а именно к области добычи жидких текучих сред из буровых скважин, и может быть использовано при разработке нефтяных, газовых и газоконденсатных месторождений для определения расхода воды, нефти и газа.

Изобретение относится к области термометрии и может быть использовано в метеорологии для исследования вертикального распределения температуры почвы или грунта. Устройство содержит зонд в виде вертикальной цепочки цифровых температурных сенсоров, имеющих протокол связи 1-WIRE, соединенных между собой параллельно и имеющих уникальные логические номера; кабельный ввод, через который выходит кабель, соединяющий сенсоры с контроллером-логгером для считывания информации.

Изобретение относится к области анализа и моделирования разработки нефтяных месторождений. Его использование позволяет за приемлемое для практики расчетное время получить один из наиболее благоприятных вариантов системы разработки или положения интервалов перфорации скважин.

Изобретение относится к области добычи природного газа и, в частности, к оперативному контролю за разработкой газовых и газоконденсатных месторождений Крайнего Севера.

Изобретение относится к области геологии. Заявленное решение включает выполнение проверочного испытания на устройстве с использованием ряда эталонных флюидов, при этом устройство имеет калиброванный оптический датчик, установленный в нем, который содержит один или более оптических элементов.

Изобретение относится к средствам дальнометрии в процессе бурения скважин и может быть использовано для определения расстояния и направления между соседними скважинами. Техническим результатом является расширение арсенала технических средств. В частности, предложен способ скважинной дальнометрии, включающий этапы, на которых: передают первый электромагнитный сигнал от передатчика, расположенного внутри буровой скважины; получают первый азимутальный сигнал приемником, расположенным внутри буровой скважины, в ответ на передачу первого электромагнитного сигнала; передают второй электромагнитный сигнал от источника возбуждения, расположенного внутри первой целевой скважины; получают второй азимутальный сигнал приемником, расположенным внутри буровой скважины, в ответ на передачу второго электромагнитного сигнала; применяют комплексную инверсию между первым и вторым азимутальными сигналами; и определяют азимутальное направление от буровой скважины до первой целевой скважины по меньшей мере частично на основании комплексной инверсии. 3 н. и 17 з.п. ф-лы, 17 ил.

Изобретение относится к неразрушающему контролю. Техническим результатом является расширение технологических возможностей устройства, позволяющих контролировать уровень остаточных технологических напряжений в профильных канавках на внутренней поверхности труб разных диаметров с разным количеством канавок с продольным и спиральным направлением. Устройство для магнитного контроля содержит корпус, состоящий из головной и хвостовой частей. Головная часть выполнена в виде трубки, на ней размещен узел центровки с возможностью регулировки под разные диаметры отверстий труб, состоящий из трех или четырех одинаковых шарнирно-рычажных сборок, распределенных по окружности. Хвостовая часть состоит из двух соосно-расположенных втулок с резьбой и скрепленного с ними футляра, причем при продольном направлении профильных канавок на трубе торцы втулок, сопряженные с футляром, перпендикулярны к их оси, а при спиральном направлении канавок торцы втулок скошены на угол α, равный углу спирали профильной канавки. В футляре установлен датчик магнитных шумов Баркгаузена, объединяющий намагничивающую и измерительную системы. Верхняя часть датчика имеет наконечник с намагничивающими и приемными контактами, профиль наконечника аналогичен профилю канавок. 2 з.п. ф-лы, 8 ил.

Изобретение относится к бурению скважин и может быть использовано для контроля расположения пробуриваемой скважины относительно целевой скважины. В частности, предложена скважинная дальномерная система, содержащая: первый оптический волновод, размещенный в первой скважине формации, причем первый оптический волновод расположен вдоль части осевой длины первой скважины; по меньшей мере второй оптический волновод, расположенный вдоль по меньшей мере той же самой осевой длины первой скважины, что и первый оптический волновод; и источник звука, размещенный во второй скважине и акустически связанный с указанной формацией. Причем оптические волноводы размещены под различными противолежащими азимутальными положениями вокруг первой скважины для определения поперечного смещения источника звука от первой скважины. Предложенное изобретение направлено на обеспечение эффективной «пассивной» дальнометрии без необходимости использования наведения тока в целевую скважину. 3 н. и 20 з.п. ф-лы, 6 ил.
Наверх