Рабочее колесо центробежного насоса

Изобретение относится к области насосостроения и может быть использовано в промышленности, сельском хозяйстве и для бытовых нужд. Рабочее колесо центробежного насоса характеризуется тем, что величина угла между касательной к выходной кромке лопатки и касательной к окружности рабочего колеса находится в диапазоне от 40 до 90°, а форма лопаток описывается поверхностями второго порядка. Изобретение направлено на повышение создаваемого напора при сохранении кпд рабочего колеса центробежного насоса. 8 з.п. ф-лы, 8 ил.

 

Изобретение относится к устройствам, предназначенным для перекачки жидкостей, и может быть использовано в промышленности, сельском хозяйстве и для бытовых нужд.

Известно рабочее колесо центробежного насоса, содержащее лопатки, имеющие искривление в одной плоскости [CN 2204344, дата приоритета 02.08.1993 г., дата публикации: 02.08.1995 г., МПК: F04D 07/04].

Известно рабочее колесо центробежного насоса, содержащее лопатки, искривленные в одной плоскости [CN 205779755, дата приоритета 19.05.2016 г., дата публикации 07.12.2016 г., МПК: F04D 13/06].

В качестве прототипа выбрано рабочее колесо центробежного насоса, содержащее искривленные в одной плоскости лопатки, имеющие угол между касательной к выходной кромке лопатки и касательной к окружности рабочего колеса от 15 до 27° [CN 204152837, дата приоритета: 15.10.2014 г., дата публикации 11.02.2015 г., МПК: F04D 29/24].

Недостаток прототипа заключается в том, что жидкость на выходе из рабочего колеса движется с малой скоростью вследствие того, что угол между касательной к выходной кромке лопатки и касательной к окружности рабочего колеса имеет малую величину, при этом увеличение этого угла вызывает гидродинамические потери и снижает кпд рабочего колеса, что в конечном итоге в значительной степени снижает эксплуатационные характеристики центробежного насоса.

Технической проблемой, на решение которой направлено изобретение, является повышение эксплуатационных характеристик центробежного насоса.

Техническим результатом, достигаемым изобретением, является повышение создаваемого напора при сохранении КПД рабочего колеса центробежного насоса.

Сущность изобретения заключается в следующем.

Рабочее колесо центробежного насоса, отличающееся тем, что величина угла между касательной к выходной кромке лопатки и касательной к окружности рабочего колеса находится в диапазоне от 40 до 90°, а форма лопаток описывается поверхностями второго порядка.

Рабочее колесо центробежного насоса может быть изготовлено методом литья или сварно-точеным методом и может иметь плоскую или вогнутую форму. Рабочее колесо состоит из основного и покрывного дисков и лопаток. Рабочее колесо имеет вход в центральной части и выход, расположенный по боковой (торцевой) поверхности. Рабочее колесо имеет радиальные рабочие каналы, образованные между лопатками, проходящие от входа в рабочее колесо к выходу из него. Лопатки предназначены для создания центробежной силы и преобразования механической энергии рабочего колеса в гидродинамическую энергию жидкости. При этом лопатки имеют входные и выходные кромки.

Выходные кромки лопаток обеспечивают возможность выброса жидкости из радиальных рабочих каналов. Выходные кромки расположены на выходе из рабочего колеса. Величина угла между касательной к выходной кромке лопатки и касательной к окружности рабочего колеса находится в диапазоне от 40 до 90°, что обеспечивает увеличение окружной составляющей абсолютной скорости на концах лопаток. При величине угла менее 40° не обеспечивается повышение создаваемого напора, а при величине угла более 90° возможно чрезмерное увеличение гидравлического сопротивления, снижение эффективности работы и возникновение повышенного износа рабочего колеса. Для обеспечения максимального повышения создаваемого напора величина угла между касательной к выходной кромке лопатки и касательной к окружности рабочего колеса может находиться в диапазоне от 80 до 90°.

Форма лопаток описывается поверхностями второго порядка, то есть любое сечение лопатки в любой плоскости имеет искривление, что обеспечивает возможность осуществления наклона лопаток в направлении вращения рабочего колеса и возможность их максимального вытягивания к входу рабочего колеса. Поверхность второго порядка может быть профилирована методом расчетов треугольников скоростей во множестве сечений с учетом выбранного значения величины углов между касательными к выходной и входной кромкам лопаток и касательными к окружностям рабочего колеса.

Дополнительно для обеспечения снижения гидродинамического сопротивления и увеличения КПД рабочего колеса входная кромка лопатки может быть расположена максимально близко к входу в рабочее колесо, а величина угла между касательной к входной кромке лопатки и касательной к окружности рабочего колеса может находиться в диапазоне от 10 до 25°.

Для обеспечения максимального снижения гидродинамического сопротивления и повышения напора, при сохранении КПД рабочего колеса, величина угла между касательной к входной кромке лопатки и касательной к окружности рабочего колеса может находиться в диапазоне от 12 до 15°, а величина угла между касательной к выходной кромке лопатки и касательной к окружности рабочего колеса может находиться в диапазоне от 80 до 90°.

Дополнительно для повышения напора, увеличения жесткости, прочности и улучшения кавитационных характеристик рабочего колеса оно может содержать один или несколько рядов вспомогательных лопаток, форма которых может повторять форму основных лопаток. Выходные кромки вспомогательных лопаток относительно выходных кромок основных лопаток, могут быть расположены на одинаковом расстоянии от оси вращения рабочего колеса. Вспомогательные лопатки первого ряда могут иметь длину от 40 до 60% от длины основных лопаток, а вспомогательные лопатки последующих рядов могут иметь длину от 40 до 60% от длины лопаток предыдущих рядов, что обеспечивает их минимальное гидродинамическое сопротивление потоку жидкости. При этом угол между касательной к выходной кромке вспомогательной лопатки и касательной к окружности рабочего колеса может находиться в диапазоне от 40 до 90°, что также обеспечивает повышение напора. Также применение вспомогательных лопаток позволяет улучшить массогабаритные характеристики рабочего колеса за счет уменьшения количества и толщины основных лопаток и обеспечивает возможность изготовления рабочего колеса из полимерных материалов.

Изобретение обладает ранее неизвестной из уровня техники совокупностью существенных признаков, отличающейся тем, что:

- угол между касательной к выходной кромке лопатки и касательной к окружности рабочего колеса составляет от 40 до 90°, что обеспечивает увеличение окружной составляющей абсолютной скорости на выходе из рабочего колеса и приводит к возрастанию динамической составляющей напора, создаваемого рабочим колесом.

- форма лопаток описывается поверхностями второго порядка, что обеспечивает возможность размещения входной кромки лопатки максимально близко к входу в рабочее колесо, приводит к снижению гидродинамического сопротивления и улучшает кавитационные характеристики рабочего колеса.

Таким образом, совокупность отличительных признаков обеспечивает возрастание динамической составляющей напора, снижает гидродинамическое сопротивление и улучшает кавитационные характеристики рабочего колеса, позволяя достигнуть технический результат, заключающийся в повышении создаваемого напора при сохранении КПД рабочего колеса, и повысить эксплуатационные характеристики центробежного насоса.

Наличие новых отличительных существенных признаков свидетельствует о соответствии изобретения критерию патентоспособности «новизна» и «изобретательский уровень».

Изобретение может быть выполнено из известных материалов с помощью известных средств, что свидетельствует о соответствии изобретения критерию патентоспособности «промышленная применимость».

Изобретение поясняется следующими чертежами.

Фиг. 1 - Схематическое изображение рабочего колеса центробежного насоса с указанием угла между касательной к выходной кромке лопатки и касательной к окружности рабочего колеса и угла между касательной к входной кромке лопатки и касательной к окружности рабочего колеса, вид сверху.

Фиг. 2 - Рабочее колесо центробежного насоса, вид слева, продольный разрез.

Фиг. 3 - Рабочее колесо центробежного насоса, вид сверху, поперечный разрез.

Фиг. 4 - Рабочее колесо центробежного насоса, снабженное вспомогательными лопатками, вид слева, продольный разрез.

Фиг. 5 - Рабочее колесо центробежного насоса, снабженное вспомогательными лопатками, вид сверху, поперечный разрез.

Фиг. 6 - Рабочее колесо центробежного насоса, снабженное вспомогательными лопатками, трехмерная модель, аксонометрический вид.

Фиг. 7 - Рабочее колесо центробежного насоса, снабженное вспомогательными лопатками, трехмерная модель, вид слева.

Фиг. 8 - Лопатка рабочего колеса центробежного насоса, имеющая форму, описываемую поверхностями второго порядка, общий вид.

Центробежный насос содержит рабочее колесо, которое имеет вход и выход и состоит из основного диска 1, покрывного диска 2 и лопаток 3 с формой, описываемой поверхностями второго порядка. При этом угол β1 между касательной к выходной кромке лопатки и касательной к окружности рабочего колеса равен 90°, а величина угла β2 между касательной к входной кромке лопатки и касательной к окружности рабочего колеса равен 12°.

Изобретение функционирует следующим образом.

Центробежный насос погружается в жидкость, и рабочее колесо начинает вращаться. Жидкость поступает на вход в рабочее колесо и с минимальным гидродинамическим сопротивлением, огибая входные кромки лопаток 3, установленные под углом β2, движется вдоль поверхностей второго порядка лопаток 3, взаимодействуя с выходными кромками лопаток 3, установленными под углом β1 и, приобретая максимальную абсолютную скорость, выходит из рабочего колеса центробежного насоса. Таким образом достигается технический результат, заключающийся в повышении создаваемого напора при сохранении КПД рабочего колеса, и повышаются эксплуатационные характеристики центробежного насоса.

1. Рабочее колесо центробежного насоса, отличающееся тем, что величина угла между касательной к выходной кромке лопатки и касательной к окружности рабочего колеса находится в диапазоне от 40 до 90°, а форма лопаток описывается поверхностями второго порядка.

2. Рабочее колесо центробежного насоса по п. 1, отличающееся тем, что величина угла между касательной к выходной кромке лопаток и касательной к окружности рабочего колеса находится в диапазоне от 80 до 90°.

3. Рабочее колесо центробежного насоса по п. 1, отличающееся тем, что величина угла между касательной к входной кромке лопатки и касательной к окружности рабочего колеса находится в диапазоне от 10 до 25°.

4. Рабочее колесо центробежного насоса по п. 3, отличающееся тем, что величина угла между касательной к входной кромке лопатки и касательной к окружности рабочего колеса находится в диапазоне от 12 до 15°, а величина угла между касательной к выходному концу лопаток и касательной к окружности рабочего колеса находится в диапазоне от 80 до 90°.

5. Рабочее колесо центробежного насоса по п. 1, отличающееся тем, что содержит ряд вспомогательных лопаток.

6. Рабочее колесо центробежного насоса по п. 5, отличающееся тем, что вспомогательные лопатки имеют длину от 40 до 60% от длины основных лопаток.

7. Рабочее колесо центробежного насоса по п. 5, отличающееся тем, что величина угла между касательной к выходному концу вспомогательных лопаток и касательной к окружности рабочего колеса находится в диапазоне от 40 до 90°.

8. Рабочее колесо центробежного насоса по п. 5, отличающееся тем, что содержит дополнительный ряд вспомогательных лопаток.

9. Рабочее колесо центробежного насоса по п. 8, отличающееся тем, что дополнительные вспомогательные лопатки имеют длину от 40 до 60% от длины вспомогательных лопаток.



 

Похожие патенты:

Широкохордная лопатка вентилятора газотурбинного двигателя состоит из основания, металлической оболочки и несущих силовых элементов, установленных в полости внутри металлической оболочки и демпфирующего материала.

Лопатка вентилятора газотурбинного двигателя состоит из основания, металлической оболочки, образующей корытце, спинку и входную кромку, и несущих силовых элементов, установленных в полости внутри металлической оболочки и демпфирующего материала в виде панелей с сотовыми ячейками.

Способ балансировки ротора компрессора в сборе, включающий: переднюю сварную конструкцию и заднюю сварную конструкцию; предварительную балансировку задней сварной конструкции ротора компрессора в сборе с дисками компрессора до установки по окружности дисков ротора компрессора его лопаток.

Объектом изобретения является крышка (1) центробежного компрессора, предназначенная для крепления на картере (13, 15) газотурбинного двигателя и содержащая множество отверстий (16).

Изобретение относится к структуре ротора для центробежной проточной машины. Ротор 10 имеет конструкцию рабочей лопатки 14, которая расположена на ступице 12 ротора без опорного диска или бандажа.

Изобретение относится к вентиляторостроению, а именно к вентиляторам для горячих газов. Способ охлаждения ротора и электродвигателя дымососа, включающий соосное закрепление диска на валу, соединяющем двигатель и высокотемпературный приемник механической вращательной энергии, характеризуется тем, что диск выполняют в форме плоской пластины, плоскость которой перпендикулярна направлению вала, а в диске изготавливают минимум два отверстия.

Изобретение относится к конструкции осевого многоступенчатого компрессора, в частности к компрессорам газотурбинных двигателей наземного и авиационного применения.

Ступень центробежного компрессора содержит вращающееся относительно статора (13) рабочее колесо (10) с несколькими со стороны ротора лопатками (12) рабочего колеса, причем каждая лопатка (12) рабочего колеса имеет входящую кромку (16) потока, выходную кромку (17) потока и продолжающуюся между входящей кромкой (16) потока и выходной кромкой (17) потока всасывающую сторону (19), напорную сторону (18) и обращенную к статору (13) внешнюю поверхность (20).

Изобретение относится к способам стабилизации перепада давления между маслом уплотнения и газом в системе уплотнения центробежных нагнетателей. Способ реализуют при помощи устройства, выполненного в виде размещенного вертикально гидроцилиндра, содержащего нижний корпус, верхний корпус, соединенные двухсторонним фланцем, верхнюю крышку, нижнюю крышку; верхний корпус содержит стержень, нижний корпус содержит поршень с уплотнением по маслу уплотнения, одним уплотнением по газу и направляющей лентой, верхняя крышка гидроцилиндра снабжена штуцером, нижняя крышка гидроцилиндра снабжена штуцером, при этом способ содержит этапы, на которых: поршень перемещают из верхнего положения в нижнее положение при аварийном падении перепада давления между маслом уплотнения и газом, вытесняя, масло уплотнения в коллектор масла уплотнения газоперекачивающего агрегата, подключают аварийный источник питания, при этом массу и диаметр стержня задают таким образом, чтобы значение перепада давления между маслом уплотнения и газом варьировалось в интервале значений больше аварийной и меньше предупредительной уставки для обеспечения максимального времени работы устройства.

Группа изобретений относится к погружным насосным системам для выкачивания текучих сред из ствола скважины. Насосная система содержит электродвигатель, заполненный первым диэлектрическим смазочным материалом, и насос, приводимый в действие электродвигателем.

Группа изобретений относится к электрическим погружным насосам, добывающим углеводороды из скважин. Насос содержит пакет из рабочих колес и диффузоров для повышения давления флюида.

Изобретение относится к нефтяному машиностроению и может быть использовано для откачки из скважин пластовой жидкости с высоким содержанием газа. Погружной лопастной мультифазный насос содержит n-число ступеней.

Изобретение относится к рабочему колесу центробежного насоса, содержащему, по меньшей мере, две лопасти (4) для перекачки сред, содержащих твердые тела. Согласно настоящему изобретению угол (β1) подъема передней кромки лопасти является меньшим чем 0 градусов.

Изобретение относится к насосостроению и может быть использовано в насосных агрегатах в нефте- и газотрубопроводах, теплоэнергетике, двигателе- и турбостроении, химической промышленности.

Изобретение относится к циркуляционному центробежному насосу с неизменной скоростью вращения. Центробежный насос имеет по меньшей мере одно рабочее колесо, кожух насоса и электрический двигатель с постоянным магнитом с пуском от сети.

Изобретение относится к отрасли гидромашиностроения и может быть использовано в насосах с повышенной всасывающей способностью. .

Изобретение относится к области машиностроения и может быть использовано при создании центробежных насосов, перекачивающих пульпу на горно-обогатительных комбинатах.

Изобретение относится к лопастным турбомашинам и касается способа передачи потенциальной и кинетической энергии жидкой или газообразной среде. .

Изобретение относится к радиальному лопастному колесу, содержащему первую концевую пластину 1 и вторую концевую пластину и расположенные на соответствующем расстоянии друг от друга лопасти 3.

Изобретение относится к насосостроению. .
Наверх