Способ оценки предела прочности керамики при растяжении

Изобретение относится к методам определения механических характеристик керамики и может быть использовано для оценки предела прочности при растяжении керамических материалов, используемых в изделиях, требующих индивидуального контроля прочностных свойств. Сущность: осуществляют диаметральное сжатие кольцевого образца путем приложения статической нагрузки, определение разрушающей образец нагрузки, определение коэффициента концентрации напряжений образца и определение его предела прочности при растяжении. Коэффициент концентрации напряжений в образце определяют по значениям предела прочности при одноосном растяжении, оцененным по модели хрупкого разрушения с использованием значений прочности материала при изгибе, по формуле:

,

где - значение прочности керамического материала при изгибе; Vu - объем образца между опорами нагружающего устройства; Vр - рабочий объем образца при испытаниях на одноосное растяжение; D - внешний диаметр кольцевого образца; d - внутренний диаметр кольцевого образца; t - толщина кольцевого образца; kн - коэффициент нагрузки образца, равный 1/(2(m+1)2) при трехточечном изгибе или равный (m+2)/(4(m+1)2) при четырехточечном изгибе;

m - модуль Вейбулла материала изделия; Рmax - разрушающая кольцевой образец нагрузка, а предел прочности материала при растяжении оценивают по формуле: Технический результат: обеспечение возможности оценки предела прочности при растяжении керамического материала в процессе производства изделий и повышение эффективности оценки при отсутствии паспортных данных по прочности на материал при прямом растяжении. 1 ил.

 

Изобретение относится к методам определения механических характеристик керамики и может быть использовано для оценки предела прочности при растяжении керамических материалов в изделиях, требующих индивидуального контроля прочностных свойств, например керамических оболочек обтекателей летательных аппаратов.

Известно, что при испытании хрупких материалов, в частности конструкционной керамики, одноосное растяжение является весьма трудно реализуемым методом из-за погрешностей, возникающих при испытании: изгибающий момент в рабочем сечении образца из-за эксцентриситета приложения нагрузки, сложность крепления образца в испытательной машине и т.д., а для высокопрочной керамики его реализация может быть вообще проблематичной. В связи с этим испытания на прямое одноосное растяжение редко используются для аттестации конструкционной керамики, а для оценки прочности при растяжении часто используют косвенные методы, одним из которых является метод диаметрального сжатия кольцевых образцов.

Известен способ определения предела прочности при растяжении хрупких материалов по методике диаметрального сжатия кольцевых образцов (Бортц С., Лунд X. Оценка испытаний на растяжение хрупких материалов. - В кн.: Графит как высокотемпературный материал. М.: «Мир», 1964, с. 174-184), включающий диаметральное приложение статической сжимающей нагрузки к цилиндрическому кольцевому образцу и определение его предела прочности при растяжении по формуле:

где Pmax - разрушающая нагрузка; Kd - коэффициент концентрации напряжений, зависящий от отношения d/D; D - внешний диаметр образца; d - внутренний диаметр образца; t - толщина образца.

Недостатком данного способа является то, что используемые при этом значения коэффициента концентрации напряжений (Kd) в зависимости от отношений диаметров образца d/D получены на основе уравнений теории упругости и не учитывают свойства конкретного материала.

Наиболее близким по технической сущности к заявленному решению является способ определения предела прочности при растяжении кольцевых образцов из материала изделий, в котором коэффициент концентрации напряжений определяли по преобразованной относительно Kd формулы (1):

где σp - предел прочности при одноосном растяжении образцов из выбранного материала, например, по паспортным данным (Успенская А.Н., Лупанова O.K. Определение предела прочности на растяжение методом сжатия колец. - Тр. Горьк. политехн. ин-та, 1970, 26, вып. 10, с. 24-26 (прототип)).

Предложенный способ учитывает свойства конкретного материала, однако при этом для определения коэффициента концентрации напряжений необходимо иметь данные по пределу прочности при одноосном растяжении рассматриваемого материала, а как уже упоминалось выше, для конструкционной керамики одноосное растяжение является достаточно трудно реализуемым методом.

Задачей заявляемого изобретения является обеспечение возможности оценки предела прочности при растяжении керамического материала в процессе производства изделий и повышение эффективности оценки при отсутствии паспортных данных по прочности на материал при прямом растяжении.

Поставленная задача достигается тем, что способ оценки предела прочности керамики при растяжении, включающий диаметральное сжатие кольцевого образца путем приложения статической нагрузки, измерение разрушающей образец нагрузки, определение коэффициента концентрации напряжений в образце и предела прочности при растяжении, отличается тем, что коэффициент концентрации напряжений в образце определяют по значениям предела прочности при одноосном растяжении, оцененным по модели хрупкого разрушения с использованием значений прочности материала при изгибе, по формуле:

где - значение прочности керамического материала при изгибе;

Vu - объем образца между опорами нагружающего устройства;

Vp - рабочий объем образца при испытаниях на одноосное растяжение;

D - внешний диаметр кольцевого образца;

d - внутренний диаметр кольцевого образца;

t - толщина кольцевого образца;

kн - коэффициент нагрузки образца, равный 1/(2(m+1)2) при трехточечном изгибе или равный (m+2)/(4(m+1)2) при четырехточечном изгибе;

m - модуль Вейбулла материала изделия;

Pmax - разрушающая кольцевой образец нагрузка,

а предел прочности материала при растяжении оценивают по формуле:

Зависимости коэффициентов концентрации напряжений исследованных материалов от отношения d/D в исследованном авторами диапазоне в сопоставлении с зависимостью для чугуна СЧ-18-35 (прототип) проиллюстрированы на чертеже. Все представленные зависимости хорошо аппроксимируются экспонентой с коэффициентами детерминации, составляющими для керамических материалов ОТМ-357, ОТМ-609 и чугуна СЧ-18-35 0,989, 0,987 и 0,996 соответственно. Анализ по U-критерию Манна-Уитни показал, что коэффициенты концентрации напряжений для образцов из материалов ОТМ-357 и ОТМ-609 в рассмотренных группах отношений d/D значимо различаются между собой. Следовательно, значения коэффициентов концентрации напряжений зависят и от физико-механических свойств материала образцов, что и учитывается в заявляемом способе оценки предела прочности керамики при растяжении σpk.

Экспериментально установлено, что для оценки предела прочности керамики при растяжении методом диаметрального сжатия кольцевых образцов из материалов: стеклокерамики литийалюмосиликатного состава ОТМ-357 и кварцевой керамики ОТМ-609, используемых при производстве оболочек антенных обтекателей, оптимальным является использование кольцевых образцов с отношением d/D=0,2-0,6. При указанном отношении внутреннего диаметра к наружному относительная ошибка определения разрушающей образец нагрузки, Pmax, для исследованных материалов не превышала 5-10%, результат вполне сопоставимый с относительной ошибкой при испытаниях на изгиб. При этом выбранное отношение d/D обеспечивает технологичность изготовления образцов.

Предлагаемый способ оценки предела прочности керамики при растяжении реализуется следующим образом.

Из технологического припуска оболочки обтекателя, предназначенного для определения физико-технических характеристик материала данной оболочки (стеклокерамики или кварцевой керамики), изготавливают кольцевые образцы с отношением диаметров d/D=0,2-0,6.

Определяют величину коэффициента концентрации напряжений кольцевого образца рассматриваемой керамики из выражения (3) по пределу прочности при растяжении, оцененному по результатам штатных испытаний на прочность при изгибе образцов материала контролируемой оболочки.

Кольцевой образец устанавливают между опорами стандартной универсальной испытательной машины, испытывают на диаметральное сжатие при скорости нагружения V=1-2 мм/мин, определяют разрушающую образец нагрузку, Pmax, и по полученным результатам по формуле (4) оценивают предел прочности испытуемого материала при растяжении, сравнивая его с заданными базовыми значениями. Для получения дополнительных данных по свойствам материала образцы испытывают с записью диаграммы «нагрузка-перемещение».

Для проведения испытаний по заявляемому способу не требуется создания специальных нагружающих устройств, достаточно наличия стандартной универсальной испытательной машины.

Сравнение заявляемого способа с прототипом показывает, что способ отличается от известного тем, что величину коэффициента концентрации напряжений образца определяют не по значениям предела прочности рассматриваемой керамики при одноосном растяжении образцов, а по пределу прочности, оцененному по модели хрупкого разрушения с использованием результатов определения прочности при изгибе.

При этом экспериментально установлено, что для оценки предела прочности стеклокерамики и кварцевой керамики при растяжении методом диаметрального сжатия оптимально использовать кольцевые образцы с отношением d/D=0,2-0,6.

При изучении других технических решений в данной области техники установлено, что рассмотренные в способе отличительные признаки ранее не встречались, способ соответствует критерию изобретения «новизна» и обеспечивает достижение указанного технического результата изобретения - повышение эффективности оценки предела прочности при растяжении керамического материала изделий в процессе производства. Таким образом, заявляемое техническое решение - способ - соответствует критерию изобретения «изобретательский уровень».

Предлагаемый способ может найти применение в процессе производства различных изделий из керамики, требующих индивидуального контроля прочностных свойств материалов, для оценки предела прочности при растяжении и при проведении опытно-конструкторских работ.

Способ оценки предела прочности керамического материала при растяжении, включающий диаметральное сжатие кольцевого образца путем приложения статической нагрузки, измерение разрушающей образец нагрузки, определение коэффициента концентрации напряжений в образце и предела прочности при растяжении, отличающийся тем, что коэффициент концентрации напряжений в образце определяют по значениям предела прочности при одноосном растяжении, оцененным по модели хрупкого разрушения с использованием значений прочности материала при изгибе, по формуле:

где - значение прочности керамического материала при изгибе;

Vu - объем образца между опорами нагружающего устройства;

Vp - рабочий объем образца при испытаниях на одноосное растяжение;

D - внешний диаметр кольцевого образца;

d - внутренний диаметр кольцевого образца;

t - толщина кольцевого образца;

kн - коэффициент нагрузки образца, равный 1/(2(m+1)2) при трехточечном изгибе или равный (m+2)/(4(m+1)2) при четырехточечном изгибе;

m - модуль Вейбулла материала изделия;

Pmax - разрушающая кольцевой образец нагрузка,

а предел прочности материала при растяжении оценивают по формуле:

σpk=Pmax×Kdu/((D-d)×t).



 

Похожие патенты:

Изобретение относится к области испытаний летательных аппаратов на прочность, в частности к средствам испытаний на сжатие стрингерных панелей из слоистых полимерных композиционных материалов.

Изобретение относится к испытательной технике, а именно к средствам исследования механических свойств образцов геологических, строительных и низкомодульных конструкционных материалов в составе испытательных лабораторных стендов, и может быть использовано для испытания различных материалов на сжатие.

Изобретение относится к области строительства, в частности к испытаниям образцов на внецентренное сжатие. Образец выполнен в виде четырехугольной призмы с двумя симметричными парными сферическими лунками для центрирующих элементов, находящимися на верхней и нижней опорной поверхности образца, одна пара из которых расположена по его продольной оси.

Изобретение относится к испытанию на растяжение оптического волокна. Установка содержит двойной шкив с первой периферийной поверхностью, имеющей первый диаметр, и со второй периферийной поверхностью, имеющей второй диаметр, который больше, чем первый диаметр, первую секцию приводного ремня, контактирующую с первой периферийной поверхностью двойного шкива, и вторую секцию приводного ремня, контактирующую со второй периферийной поверхностью двойного шкива, ввод волокна, который ограничен первой периферийной поверхностью и первой секцией приводного ремня, контактирующей с первой периферийной поверхностью, выпуск волокна, который ограничен второй периферийной поверхностью и второй секцией приводного ремня, контактирующей со второй периферийной поверхностью, направляющую, предназначенную для пропускания оптического волокна из ввода волокна до выпуска волокна, и один приводной узел, предназначенный для вращения первой секции приводного ремня и второй секции приводного ремня.

Изобретение относится к исследованию прочностных свойств материалов оптическими средствами измерения путем приложения к ним сжимающих статических нагрузок. Устройство содержит основание с неподвижной плитой и подвижную плиту.

Изобретение относится к технике испытаний материалов, в частности к устройствам для испытания образца материала на сжатие в условиях гидростатического давления. Устройство содержит герметичный контейнер, установленные в его полости опору и размещенный со стороны одного из торцов контейнера плунжер, матрицу с коническим отверстием, закрепленную со стороны второго торца контейнера, вспомогательный образец, установленный на матрице и предназначенный для выпрессовывания его через матрицу, и две плиты для сжатия испытуемого образца, одна из которых установлена на опоре.

Изобретение относится к измерительному и испытательному оборудованию, в частности к устройствам для измерения усилия расчленения соединителей, в том числе многоштырьковых.

Изобретение относится к способам измерения коэффициента Пуассона материала готовой герметичной тонкостенной полимерной трубки и может быть использовано для создания координатных детекторов на базе цилиндрических тонкостенных дрейфовых трубок, включающих, как правило, несколько тысяч каналов регистрации.

Изобретение относится к оптическим способам измерения деформаций в области исследования механических свойств материалов, в частности инструментальных сталей и твердых сплавов, путем приложения сжимающих статических нагрузок.

Изобретение относится к исследованию прочностных свойств материалов оптическими средствами измерения путем приложения к ним сжимающих статических нагрузок. Устройство содержит основание с неподвижной плитой и подвижную плиту.
Наверх