Способ оценки ресурса стальных корпусов артиллерийских снарядов

Изобретение относится к артиллерийским боеприпасам и может быть использовано при оценке ресурса стальных корпусов снарядов после длительных сроков хранения. Сущность: на всех корпусах снарядов, без их разборки, в непосредственной близости к ведущему пояску на корпусе, производят измерение коэрцитивной силы. Измерение выполняют путем сканирования зоны корпуса вдоль всего пояска, причем с обеих сторон пояска. Определяют среднее значение коэрцитивной силы в корпусах для всей партии. Снаряды, на корпусах которых коэрцитивная сила более чем на 20% превышает среднее значение в партии, отбраковывают. Из оставшихся проконтролированных снарядов отбирают не менее десяти процентов от партии с наибольшими значениями коэрцитивной силы. Из выборки, снаряд с максимальным значением коэрцитивной силы разбирают. Из корпуса этого снаряда из зоны крепления ведущего пояска вырезают образцы для механических испытаний. Испытания проводят по стандартным методикам. На основании этих испытаний оценивают механические свойства металла корпуса. При соответствии этих свойств заданному чертежом уровню принимают решение о продлении сроков эксплуатации партии изделий. При отклонении этих свойств от заданного чертежом уровня, отбирают, как минимум, два снаряда с уровнем коэрцитивной силы не менее чем на 10% меньше, чем у уже испытанного. По той же методике оценивают механические свойства металла этих двух корпусов. При соответствии механических свойств металла этих корпусов заданному уровню принимают решение о продлении сроков эксплуатации партии изделий. Снаряды, в корпусах которых коэрцитивная сила больше чем у последнего испытанного с положительными свойствами, изымают из партии. При получении отрицательных результатов испытаний продление сроков эксплуатации на партию этих снарядов не проводят. Технический результат: повышение экономичности и технологичности способа оценки ресурса стальных корпусов артиллерийских снарядов. 2 ил.

 

Изобретение относится к артиллерийским боеприпасам и может быть использовано при оценке ресурса стальных корпусов снарядов после длительных сроков хранения.

В процессе хранения металл снаряда подвергается деформационному старению или деструкции (действующие напряжения, температурные изменения, время), что на начальном этапе приводит к возрастанию плотности дислокаций, затем к образованию пор и далее к разрушению.

В настоящее время при продлении сроков эксплуатации снарядов с истекшими сроками хранения по отдельным методикам проводят оценку состояния металла корпусов снарядов. При этом случайной выборкой отбирают до 10% снарядов, их разбирают, проводят дефектоскопирование корпусов, как правило, магнитопорошковым методом, на предмет обнаружения трещин. Измеряют твердость металла, как правило, в области центрирующих уплотнений (ЦУ). Из группы корпусов с максимальным значением твердости вырезают стандартные образцы для механических испытаний, проводят испытания этих образцов. И на основании данных испытаний принимают решение о продлении сроков эксплуатации всей партии снарядов.

Недостатком такой методики является низкая достоверность результатов, на основании которых принимается решение о продлении сроков эксплуатации снарядов. Так как, на испытания отбирают изделия случайным образом без учета их фактического состояния. Твердость металла не является показателем, определяющим деструкционное состояние металла. Твердость металла коррелирует только с пределом прочности стали. При протекании деструкции предел прочности стали не меняется.

Измерения в области ЦУ малоинформативны, так как эта зона снаряда минимально нагруженная.

Для повышения оценки состояния стальных изделий применяют неразрушающие методы контроля, которые позволяют выявить зоны металла с пониженными свойствами.

Проведенные автором расчеты и эксперименты показывают, что рост коэрцитивной силы (на измерении коэрцитивной силы построен один из магнитных методов неразрушающего контроля) в корпусе стального снаряда будет свидетельствовать о протекании в последнем различных деструкционных процессов, которые могут привести металл к потере физико-механических свойств. Известно, что превышение уровня деструкции на определенную величину приведет к необратимым процессам в металле корпуса и, недопустимо для его применения по назначению.

Известен способ определения остаточного ресурса трубопровода (патент РФ №2194967), в соответствии с которым для определения остаточного ресурса стального трубопровода на трубопроводе выявляют места с максимальным значением коэрцитивной силы и в этой зоне с помощью переносного твердомера выполняют пластическое деформирование металла. После чего, на основании этих исследований определяют относительное удлинение металла.

Применение этого способа для оценки состояния партии снарядов невозможно, так как при его использовании возможно определять состояние металла только в случае, если он не был подвергнут пластической деформации или процессу образования микротрещин в процессе старения. Кроме того, испытания в соответствии с этим способом не позволяют определять другие технические характеристики металла, такие как: предел текучести металла, ударную вязкость, относительное сужение. А для продления срока эксплуатации снарядов необходимо знание именно этих характеристик.

Экспериментально установлено, что при пластической деформации стали (начало диапазона появления деструкционных процессов в сталях) коэрцитивная сила в стали существенно возрастает. На фиг. 1 показана часть стального образца, вырезанного из корпуса снаряда, после его нагружения на разрывной машине. По длине этого образца, в отмеченных точках (точки 1-11), с помощью коэрцитиметра ИКМ-02Ц проведены измерения коэрцитивной силы Hc. Данные этих измерений приведены в таблице фиг. 2.

Фиг. 1. Стальной образец после разрушения: 1-11 - зоны измерения Hc; 1 - место разрушения образца; ширина образца в зоне 11 составляет 10 мм; толщина образца 6 мм. Фиг. 2. Таблица.

Как видно из таблицы, Hc в «рабочей части» образца (зоны 1-7) изменяется от 81 (рядом с зоной разрушения и локализацией деформации - зона 1) до 37 (зона 7). В этих зонах (1-7) степень деформации различна и максимальна в месте разрушения (зона И). В зонах образца устанавливаемых в захваты разрывной машины Нс изменяется в пределах от 26 до 32 единиц. В образце до разрушения величина Нс в «рабочей части» составляла 30-31 единицу. Исследования микроструктуры образца в различных областях показали, что уже в зоне 7 в металле наблюдаются отдельные поры и микротрещины. Состояние металла, соответствующее зоне 7, невозможно вернуть к исходному путем термообработки. Это состояние сопровождается приростом коэрцитивной силы более чем на 20%, по сравнению с исходным. Приведенные данные и отмеченные закономерности подтверждены многочисленными экспериментами на всех ферромагнитных сталях.

Эти результаты положены в основу предлагаемого неразрушающего контроля механических свойств металла партии корпусов однотипных снарядов после длительных сроков их хранения. А именно, предлагается по значениям коэрцитивной силы в корпусе стального снаряда оценивать степень деструкции металла, и, далее, по данным разрушающих испытаний определять фактические механические свойства металла корпуса с полученным значением коэрцитивной силы, учитывая, что чем выше значение коэрцитивной силы стали, тем степень ее деструкции выше.

Установить исходное значение коэрцитивной силы в корпусе исследуемого снаряда, для сравнения с измеренным в настоящее время, невозможно.

В связи с этим в настоящем изобретении предлагается оценивать фактические свойства партии однотипных корпусов путем вырезки образцов из корпусов с максимальными значениями коэрцитивной силы и проведении на них измерений механических свойств по действующим стандартам. При этом корпуса со значением коэрцитивной силы больше или равным значению в корпусе со свойствами несоответствующими требованиям отбраковывают. Экономически и технологически это обосновано, так как предлагаемый способ будет применяться к партии однотипных снарядов (в партии несколько тысяч снарядов) и разрушающие испытания, максимум на трех снарядах, составляют незначительные затраты.

Предлагаемый способ оценки ресурса стальных корпусов артиллерийских снарядов заключается в том, что при решении вопроса о продлении сроков эксплуатации партии снарядов с истекшими сроками хранения проводят оценку соответствия механических свойств металла корпусов снарядов, заданному чертежом уровню. Для этого на всех корпусах снарядов, без их разборки, в непосредственной близости к ведущему пояску на корпусе, производят измерение коэрцитивной силы. Измерение выполняют путем сканирования зоны корпуса вдоль всего пояска, причем с обеих сторон пояска. Измерения выполняют стандартными приборами для измерения коэрцитивной силы, например, прибором МС-10. Зона снаряда в непосредственной близости к месту крепления ведущего пояска снаряда является максимально напряженной на всем корпусе снаряда. А, как известно, максимально быстро процессы деструкции проходят в местах с максимальными напряжениями. Поэтому изменение механических свойств металла снаряда будет проходить максимально быстро именно в зонах непосредственно, примыкающих к месту крепления ведущих поясков. Расчетом на основании данных измерений на каждом корпусе определяется среднее значение коэрцитивной силы в корпусах для всей партии. Снаряды, на корпусах которых коэрцитивная сила более чем на 20% превышает среднее значение в партии, отбраковывают. Превышение коэрцитивной силы более чем на 20% свидетельствует, что в этих корпусах деструкция уже имеет недопустимое состояние (см. данные на фиг. 1 и в таблице фиг. 2). Из оставшихся проконтролированных снарядов отбирают не менее десяти процентов от партии с наибольшими значениями коэрцитивной силы. Объем выборки в 10% обусловлен необходимостью подтверждения идентичности состояния металла корпусов во всей партии изделий. Из выборки, снаряд с максимальным значением коэрцитивной силы разбирают. Из корпуса этого снаряда из зоны крепления ведущего пояска вырезают образцы для механических испытаний. Испытания проводят по стандартным методикам. На основании этих испытаний оценивают механические свойства металла корпуса. При соответствии этих свойств заданному чертежом уровню принимают решение о продлении сроков эксплуатации партии изделий. При отклонении этих свойств от заданного чертежом уровня, отбирают, как минимум, два снаряда с уровнем коэрцитивной силы не менее чем на 10% меньше, чем у уже испытанного, что составляет примерно середину диапазона изменения коэрцитивной силы до наступления недопустимой деструкции (рост примерно на 20%, см. таблицу, фиг. 2). По той же методике оценивают механические свойства металла этих двух корпусов. При соответствии механических свойств металла этих корпусов заданному уровню принимают решение о продлении сроков эксплуатации партии изделий. Снаряды, в корпусах которых коэрцитивная сила больше чем у последнего испытанного с положительными свойствами, изымают из партии. При получении отрицательных результатов испытаний продление сроков эксплуатации на партию этих снарядов не проводят.

Способ оценки ресурса стальных корпусов артиллерийских снарядов с ведущими поясками на корпусе после истечения их сроков хранения, заключающийся в том, что из партии снарядов с истекшими сроками хранения отбирают группу снарядов, оценивают механические свойства металла корпусов этих снарядов и принимают решение о продлении сроков эксплуатации партии снарядов, отличающийся тем, что на всех корпусах снарядов, без их разборки, в непосредственной близости к ведущему пояску на корпусе, производят измерение коэрцитивной силы, вычисляют среднее значение коэрцитивной силы для корпусов всей партии, снаряды со значением коэрцитивной силы более чем на двадцать процентов превышающее среднее значение для партии отбраковывают, из оставшейся партии снарядов отбирают не менее десяти процентов снарядов с наибольшими значениями коэрцитивной силы, оценивают механические свойства металла корпуса из выборки с максимальным значением коэрцитивной силы, при соответствии этих свойств заданному уровню принимают решение о продлении сроков эксплуатации партии изделий, при отклонении этих свойств от заданного уровня, оценивают механические свойства металла как минимум на двух корпусах со значениями коэрцитивной силы не менее чем на десять процентов меньше, чем у металла уже испытанного корпуса, при соответствии механических свойств металла этих корпусов заданному уровню принимают решение о продлении сроков эксплуатации партии изделий, снаряды, в корпусах которых коэрцитивная сила больше чем у последнего испытанного с положительными свойствами, изымают из партии, а при получении отрицательных результатов испытаний, продление сроков эксплуатации на партию этих снарядов, не проводят.



 

Похожие патенты:

Изобретение относится к измерительной технике, а именно к средствам измерения относительных деформаций. Многоканальный регистратор деформаций, каждый канал которого содержит датчик деформаций в виде тензорезистора, входящего в состав мостовой схемы, аналого-цифровой преобразователь и внутренний источник питания, отличающийся тем, что в каждом канале тензорезистор включен в состав измерительной мостовой схемы Уитстона, дополнительно введен искрозащитный барьер по питанию мостовой схемы Уитстона, состоящий из последовательно соединенных предохранителя, ограничивающего и балластного резисторов, двух двунаправленных стабилитронов, первые выводы которых объединены и соединены со вторым выводом ограничительного резистора и первым выводом балластного резистора, а вторые выводы двунаправленных стабилитронов объединены и соединены с отрицательной клеммой внутреннего источника питания, к положительной клемме которого подключен первый вывод предохранителя, выходы искрозащитного барьера по питанию мостовой схемы Уитстона подключены к одной диагонали мостовой схемы Уитсона, другая диагональ которой подключена к соответствующим входам аналого-цифрового преобразователя, также в регистратор введены первый и второй искрозащитные барьеры, вход первого из которых соединен с выходом персонального компьютера, а выход соединен с соответствующими входами аналого-цифрового преобразователя каждого канала, вход второго искрозащитного барьера соединен с соответствующими выводами внешнего блока питания, а выход - с соответствующими входами внутреннего источника питания и соответствующими входами аналого-цифрового преобразователя каждого канала, причем первый и второй искрозащитный барьер включают в себя предохранитель, первый вывод которого подключен к положительной входной клемме барьера, второй вывод подключен к первому выводу резистора, второй вывод которого соединен с первыми выводами двух двунаправленных стабилитронов, вторые выводы которых объединены и соединены с отрицательной клеммой искрозащитного барьера.

Изобретение относится к способу электромагнитной дефектоскопии эксплуатационных колонн нефтяных и газовых скважин. Техническим результатом является упрощение технологии обнаружения и разделения дефектов, расположенных на внутренней и внешней стенках эксплуатационной колонны, обеспечение высокой точности обнаружения и разделения дефектов.

Группа изобретений относится к медицинской технике, а именно к средствам визуализации методом магнитоиндукционной томографии. Способ включает в себя получение доступа к множеству результатов измерения характеристик катушки, полученных для образца с помощью одной катушки, которую возбуждают радиочастотной (РЧ) энергией от источника РЧ-энергии, при этом каждый из множества результатов измерения характеристик катушки получен с помощью одной катушки в одном из множества отдельных местоположений относительно образца и соотнесения данных о положении катушки с каждым из множества результатов измерения характеристик катушки.

Группа изобретений относится к области исследования материалов радиографическими методами с применением ударных нагружений и воздействием магнитного поля. Сущность изобретений заключается в том, что пучок протонов направляют под углом к силовым линиям магнитного поля, после облучения области исследования получают три изображения отклоненного магнитным полем протонного пучка путем его поочередной фокусировки с помощью трех магнитооптических линзовых систем на трех конверторах систем регистрации, первое из которых формируют без изменения интенсивности пучка, а следующие - с последовательным изменением интенсивности пучка путем его ослабления в зависимости от его отклонения магнитным полем во взаимно перпендикулярных направлениях, обработку осуществляют путем деления полученных изображений отклоненного магнитным полем пучка между собой и на изображение пучка до пропуска его через область исследования с учетом обратного преобразования функции ошибок с вычислением углов рассеяния пучка протонов под действием магнитного поля и последующей реконструкцией изображения компонентов вектора магнитной индукции во взаимно перпендикулярных направлениях, по которому определяют поля деформации области исследования.

Изобретение относится к неразрушающему контролю металлов и сплавов, а именно к устройствам, предназначенным для автоматизированного экспресс-контроля состава сплавов на основе железа, а именно содержания ферритной фазы в различных марках стали при литье и, прежде всего, в стальных пробах и калибровочных образцах.

Группа изобретений относится к области медицины и может быть использована для изучения процесса накопления магнитных наночастиц в заданном участке сосудистой системы под воздействием внешнего магнитного поля.

Изобретение относится к измерительной технике, а именно к испытаниям магнитных материалов, и может быть использовано для определения содержания феррита в материале, измерения температурных зависимостей степени ферритизации и определения по ним температур магнитных фазовых переходов.

Изобретение относится к области магнитной дефектоскопии литых заготовок из стали 110Г13Л и может быть использовано для определения качества заготовок из стали 110Г13Л, необходимого для работы изделий из них при ударном виде износа.

Использование: для обнаружения магнитных свойств магнитного материала, содержащегося в листе бумаги. Сущность изобретения заключается в том, что устройство содержит магнитный модуль, который генерирует магнитное поле, перпендикулярное направлению транспортирования листа бумаги на пути транспортирования и параллельное поверхности транспортирования листа бумаги, причем интенсивность магнитного поля уменьшается по мере транспортирования листа бумаги в направлении транспортирования, а после достижения 0 (нуля) интенсивность магнитного поля увеличивается, при этом направление магнитного поля является противоположным направлением; и множество магнитных датчиков, расположенных в магнитном поле, генерируемом магнитным модулем в местах, в которых интенсивность магнитного поля взаимно отличается и которые обнаруживают магнитные свойства листа бумаги, транспортируемого по пути транспортирования, при этом магнитные свойства магнитного материала, содержащегося в листе бумаги, обнаруживаются на основе выходных сигналов указанного множества магнитных датчиков, получаемых при обнаружении магнитного материала.

Изобретение относится к неразрушающему контролю металлов и сплавов, а именно к методам контроля фазового состава, и может быть использовано в металлургии, металлообработке, машиностроении, авиастроении для контроля качества продукции и стабильности технологических процессов.

Изобретение относится к методам испытаний и предназначено для определения работоспособности различных пиротехнических изделий (ПИ) - пироболтов, пирозамков, пироэнергодатчиков и др., при тепловом воздействии.

Изобретение относится к способам и устройствам для измерения характеристик взрыва боеприпаса. Способ определения характеристик взрыва заряда взрывчатого вещества (ВВ) в ближней зоне с использованием измерительного стержня Гопкинсона расчетным путем по замеренным параметрам упругой деформации, возникающей в стержне под действием продольной волны напряжения, инициированной импульсным воздействием ударной воздушной волны непосредственно на его торец.

Изобретение относится к способам и устройствам для измерения характеристик взрыва боеприпаса. Способ определения характеристик взрыва в ближней зоне с использованием нагружаемого элемента в форме стержня - величины давления ударной воздушной волны (УВВ) и импульса осуществляется по результатам действия на материал стержня продольной волны напряжения, инициированной импульсным воздействием УВВ непосредственно на его торец.

Изобретение относится к испытательной технике. Преимущественная область использования - испытания по определению характеристик фугасности - амплитуды избыточного давления и удельного импульса положительной фазы проходящей воздушной ударной волны (ВУВ) при взрыве зарядов боеприпасов, имеющих собственную скорость полета.

Изобретение относится к области оружейной техники и может быть использовано для испытания патронов, в частности для проверки патронов на пригодность к стрельбе при проведении криминалистических экспертиз.

Изобретение относится к способам испытаний осколочных боеприпасов, конкретно к определению характеристик дробления материала корпуса на осколки под действием взрывной нагрузки.

Изобретение относится к средствам и системам разведения детонационных команд и устройствам взрывной логики. Оболочку детонирующего удлиненного заряда (ДУЗ) с переменной по длине толщиной стенки снаряжают одним из известных способов бризантным взрывчатым веществом – ВВ.

Изобретение относится к методам определения чувствительности взрывчатых веществ (ВВ) к механическим воздействиям. Способ включает помещение образца ВВ на наковальню, в центре которой выполнена выемка круглого сечения, проведение ударных испытаний с использованием груза с центральным бойком, характеризующегося переменными параметрами и установленного с возможностью совершения возвратно-поступательных перемещений по вертикальным направляющим, регистрацию и анализ результатов измерений.

Изобретение относится к области испытательных и экспериментальных исследований по определению параметров элементов осколочного фронта различных боеприпасов. В способе применяют в качестве регистратора фактов пробития жесткую каркасную систему, состоящую из 6 квадратных рамок, выполненных из деревянного бруса квадратного сечения со стороной длиной 20 мм с прикрепленными к ним преградами из пенопласта или пенополиуретана со стороной длиной 1080 мм и толщиной 15 мм, разнесенных на равном расстоянии.

Изобретение относится к области испытания боеприпасов. Способ определения глубины проникания бронебойных цельнокорпусных калиберных и подкалиберных снарядов в толстостенную преграду включает выстрел снарядом по преграде и последующее определение его скорости доплеровским локатором до и после поражения преграды.

Устройство для определения импульса взрыва заряда взрывчатого вещества/боеприпаса (ВВ) в ближней зоне содержит опорную конструкцию, состоящую из полки с горизонтальной поверхностью и вертикальной стойки/стоек для ее крепления и размещенную на полке совокупность подвергаемых воздействию поражающих факторов взрыва призматических метаемых тел. Метаемые тела выполнены в форме правильных призм, боковые ребра которых имеют большую длину, чем стороны их оснований, и установлены на опорной конструкции в несколько рядов по высоте, образуя своими фронтальными поверхностями фрагмент сотовой поверхности заданного профиля. С тыльной стороны метаемые тела снабжены индикаторными элементами равной массы, размещенными в каждом горизонтальном ряду укладки на разной высоте относительно их опорных поверхностей. Метаемые тела выполнены в форме прямоугольных параллелепипедов, правильных треугольных или шестиугольных призм. Метаемые тела могут быть выполнены полыми, а их полости заполнены сыпучим или отверждающимся материалом заданной плотности. Индикаторные элементы метаемых тел могут быть в форме стержней, и в пределах горизонтального ряда укладки иметь разную длину. Для более точных измерений индикаторные элементы располагают на разных расстояниях от одинаково ориентированных боковых поверхностей метаемых тел в пределах вертикального ряда укладки. Изобретение позволяет повысить точность измерений. 7 з.п. ф-лы, 5 ил.
Наверх