Способ позиционирования кора оптического волокна над светочувствительной областью фотодетектора

Изобретение относится к области оптической техники и касается способа позиционирования кора оптического волокна над светочувствительной областью фотодетектора. Способ включает в себя подведение кора оптического волокна к поверхности на расстояние , после чего кор оптического волокна перемещают параллельно поверхности фотодетектора до достижения минимума интенсивности, соответствующего первой дорожке электрического контакта. Далее перемещают кор оптического волокна по направлению дорожки к светочувствительной области фотодетектора до момента увеличения интенсивности, соответствующего окончанию первой дорожки электрического контакта и далее до момента уменьшения интенсивности, соответствующего началу второй дорожке электрического контакта, и устанавливают кор по середине, между первой и второй дорожками электрических контактов. Затем выполняют аналогичные действия для других осей, соответствующих другим парам дорожек электрических контактов. При проведении измерений используется свет, распространяющийся по кору оптического волокна, длина волны которого выбирается равной четырехкратной толщине дорожек электрических контактов. Технический результат заключается в повышении точности позиционирования. 4 ил.

 

Способ прецизионного позиционирования кора оптического волокна над светочувствительной областью фотодетектора может использоваться в оптико-механическом оборудовании и прецизионных устройствах регистрации оптического излучения, требующих высокого пространственного разрешения, в телекоммуникационных устройствах, в устройствах сочленения источников излучения, например полупроводниковых лазеров, с оптоволоконными устройствами, в испытательном стенде для исследования и оптимизации однофотонных детекторов для систем квантовой криптографии, включая сверхпроводящие однофотонные детекторы.

Известен способ совмещения оптического волокна с оптически активным элементом устройства содержащего приемный модуль с приемной зоной, блок ориентации, световод, включающий оболочку с первым окончанием и вторым окончанием, кор с первым концом и вторым концом, а также оптический модуль, включающий первый источник излучения, причем блок ориентации расположен на приемном модуле, световод первым окончанием установлен в блоке ориентации, первым концом кора оптически сопряжен с приемной зоной, а вторым концом кора оптически сопряжен с первым источником излучения оптического модуля [PL209942].

Недостатки указанного способа заключаются: 1. В том, что предполагается совмещение оптического световода по наружному диаметру оболочки (обычно диаметр 125 мкм) с искусственно созданным направляющим кольцом толщиной 0.2 мкм и внутренним диаметром на 2 мкм большим диаметра оптического световода. Это предполагает, что точность совмещения не превышает 1 мкм. 2. Совмещение кора оптического волокна с приемной зоной предполагает, что ось кора точно совпадает с осью внешней оболочки световода. Это дополнительно снижает точность совмещения. 3. Визуальный контроль процесса совмещения в указанном устройстве весьма затруднителен. Эти три фактора приводят к относительно невысокой точности совмещения. 4. Закрепление оптического волокна относительно приемной зоны предполагает заполнение фиксирующим составом зазора между торцом оптического волокна и поверхностью приемного модуля, на которой сформирована приемная зона. Однако при изменении температуры, из-за разности коэффициентов линейного расширения материала световода, фиксирующего состава и поверхности приемной зоны, возникают механические напряжения, которые могут влиять на свойства приемной зоны, вплоть до ее разрушения. Таким образом, недостатки - низкая точность и возможность разрушения приемной зоны.

Технический результат предлагаемого изобретения заключается в повышении точности позиционирования в сравнении с известными аналогами, а также расширение функциональных возможностей - обеспечение возможности устанавливать и контролировать расстояние между кором и поверхностью светочувствительной области с высокой точностью (до 0,1 нм). Другой технический результат заключается в расширении области применения - возможности использования в детекторах, в которых коэффициенты отражения электрических контактов и подложки очень близки по своим значениям.

Указанный технический результат достигается тем, что способ позиционирования кора оптического волокна над светочувствительной областью фотодетектора, включающий подведение кора оптического волокна к поверхности на расстояние после чего кор оптического волокна перемещают параллельно поверхности фотодетектора до достижения минимума интенсивности, соответствующего первой дорожке электрического контакта, после чего перемещают кор оптического волокна по направлению дорожки к светочувствительной области фотодетектора, до момента увеличения интенсивности, соответствующего окончанию первой дорожки электрического контакта и далее, до момента уменьшения интенсивности соответствующего началу второй дорожке электрического контакта, устанавливают кор по середине, между первой и второй дорожками электрических контактов, после чего производят аналогичные действия для других осей, соответствующих другим парам дорожек электрических контактов, при этом используется свет, распространяющийся по кору оптического волокна, а длина волны света λ выбирается равной четырехкратной толщине дорожек электрических контактов.

Сущность изобретения заключается в прецизионном позиционировании кора первого конца оптического волокна над приемной зоной для их оптического сопряжения используя интерференцию отраженных от поверхности дорожки электрического контакта и поверхности приемного модуля. В рамках данного устройства позиционирование первого конца кора оптического волокна над приемной зоной осуществляется с использованием света, распространяющегося по кору. В качестве меток, по которым производится позиционирование кора оптического волокна используются дорожки электрических контактов, использующиеся для регистрации сигнала оптического отклика светочувствительной области фотодетектора. Дорожки соединены непосредственно со светочувствительной областью фотодетектора, что обеспечивает высокую точность совмещения. Они могут иметь определенную форму, например, клиновидные, для использования дифракционных эффектов позволяющих повысить точность позиционирования. Использование интерференционных эффектов позволит с высокой точностью (до 0.1 nm) устанавливать и контролировать расстояние между кором оптического волокна и поверхностью меток или светочувствительной области фотодетектора. Использование предлагаемого способа позволит контролировать и оптимизировать оптическое воздействие на приемную зону.

Преимущества настоящего способа заключаются в том, что анализируется интенсивность отраженного от поверхности фотодетектора и от поверхности контактов излучения. За счет того, что длина волны лазера выбирается равно четырехкратной толщине дорожек электрических контактов, возникают интерференционные эффекты. Так, поверхность дорожки соответствует минимуму интенсивности, а поверхность подложки детектора соответствует увеличению интенсивности. Это позволяет производить максимально точное позиционирование кора оптического волокна над светочувствительной областью фотодетектора, а также контролировать расстояние от кора до светочувствительной области.

На фиг. 1 изображено схематическое устройство приемного модуля в общем виде.

На фиг. 2 изображен вариант выполнения устройства прецизионного позиционирования.

На фиг. 3 изображен принцип действия интерференционного способа прецизионного позиционирования.

На фиг. 4 изображен вариант позиционирования оптического волокна на реальной структуре массива из 9 детекторов.

Способ прецизионного позиционирования кора оптического волокна над светочувствительной областью фотодетектора реализуется в устройстве прецизионного позиционирования кора оптического волокна над светочувствительной областью фотодетектора. Устройство прецизионного позиционирования кора оптического волокна над светочувствительной областью фотодетектора (Фиг. 1) содержит приемный модуль, на поверхности которого сформирована светочувствительная область 1 с дорожками электрических контактов 2-5, лазер 6 (Фиг. 2), детектор 7, световод 8 и блок ориентации 9. В качестве светочувствительной области фотодетектора 1 может использоваться сверхпроводящая, полупроводниковая или иная светочувствительная структура, изменяющая свои электрические свойства под воздействием оптического излучения сформированная на поверхности пластины Si, Al2O3, MgO или иной изолирующей подложки. Светочувствительная структура изменяет свои электрические свойства под воздействием оптического излучения, которые регистрируются в виде электрических сигналов с использованием электрических контактов. Электрические контакты представляют собой тонкопленочные структуры выполненные из проводящего (например золото, медь и т.п.) или сверхпроводящего (например ниобий) материала. Блок ориентации 9 предназначен для прецизионного перемещения световода 8 относительно приемного модуля. В качестве блока ориентации могут быть использованы, например, трехкоординатные пьезоэлектрические подвижки фирмы PI Ceramics или Attocube. В качестве световода 8 может использоваться стандартное одномодовое волокно SMF-28 (могут использоваться другие одномодовые или многомодовые оптические волокна).

Первая задача, которая решается с использованием способа прецизионного позиционирования кора оптического волокна над светочувствительной областью фотодетектора, состоит в прецизионном позиционировании кора 10 (Фиг. 3а) оптического волокна над светочувствительной областью фотодетектора (1, Фиг. 1). С этой целью дорожки электрических контактов 2-5 (Фиг. 1) располагаются таким образом, что их оси проходят через центр симметрии фоточувствительной области. После этого оптическое излучение от источника 6 (Фиг. 2) пропускают через кор 10 по направлению к первому окончанию 11. Первое окончание 11 кора 10 световода 8 подводят к поверхности приемного модуля 12 на расстояние сравнимое с диаметром кора 10. Расстояние контролируется визуально при помощи оптического микроскопа по расстоянию между торцом первого окончания 11 и его зеркальным отражением от поверхности 12 приемного модуля 1, и по свету, отраженному от поверхности приемного модуля обратно в кор 10 и регистрируемому приемным устройством 7. После этого первое окончание 11 кора 10 световода 8 перемещается параллельно поверхности приемного модуля до пересечения с одной из сформированных дорожек электрических контактов 2-5. При пересечении с одной из указанных дорожек (например 2) изменяется интенсивность света отраженного обратно в кор 10 и это изменение регистрируется на приемном модуле 7. По изменению сигнала на приемном модуле 7 при пересечении дорожки электрического контакта 2 первое окончание 11 кора 10 световода 8 располагают точно на середине сечения дорожки 2 в направлении перемещения первого окончания 11. После этого первое окончание 11 перемещается вдоль дорожки 2 по направлению к дорожке 4. По изменению сигнала на приемном модуле 7 первое окончание 11 кора 10 световода 8 располагают точно посередине между краями дорожек 2 и 4 соответственно. Аналогично, используя края дорожек электрических контактов 3 и 5, производится юстировка первого окончания 11 по второй оси. Таким образом, ось окончания 11 кора 10 располагается точно над серединой приемной зоны 1.

В случае одинакового коэффициента отражения принцип позиционирования состоит в следующем. Длина волны лазера λ выбирается таким образом, чтобы толщина дорожек электрических контактов 2-5 (Фиг.1), находящихся на поверхности фотоприемного модуля оказалась толщиной λ/4, где λ - длина волны света излучаемого лазером. Оси дорожек электрических контактов 2-5 (штрих-пунктирные линии на фиг. 1) пересекаются в центре светочувствительной области фотодетектора. Окончание оптического волокна 11 подводится к поверхности приемного модуля 12 на расстояние Это достигается прецизионным перемещением оптического волокна вдоль нормали к поверхности приемного модуля и одновременной регистрации интенсивности отраженного в кор света. Требуемое расстояние соответствует минимуму интенсивности. В этом случае разность хода лучей отраженных от торца оптического волокна 11 (обычно около 4%) и от поверхности приемного модуля 12 составляет т.е. электромагнитные волны находятся в противофазе и происходит подавление отраженной в кор световода волны 14. При перемещении кора световода параллельно поверхности в область над дорожкой электрического контакта (Фиг. 3б) ситуация изменяется -разность хода лучей отраженных от торца световода и поверхности дорожки электрического контакта 17 Δ=nλ, что приводит к усилению отраженной в кор световода волны 16. Таким образом, за счет эффектов, связанных с интерференцией, происходит изменение эффективного коэффициента отражения света в кор оптического волокна при перемещении световода. Дальнейший алгоритм прецизионного позиционирования кора световода над светочувствительной областью фотодетектора подробно описан выше.

Предложенный способ может применяться и в том случае, когда на поверхности приемного модуля сформировано несколько светочувствительных областей, например, отличающихся спектральными характеристиками. На фиг. 4а представлено СЭМ изображение массива из 9 детекторов. Стрелки 18 указывают на светочувствительные области, 19 - на ниобиевые дорожки электрических контактов толщиной 400 nm. Позиционирование производилось при помощи лазера с длиной волны излучения 1550 nm. На фиг. 4б, представлены зависимости интенсивности отраженного в кор излучения от положения световода вдоль сечений 20 (на графике обозначены квадратиками) и 21 (на графике обозначены кружочками).

Возможность прецизионного контроля перемещения торца световода вдоль нормали к поверхности светочувствительной области фотодетектора по зависимости интенсивности отраженного в кор света от расстояния между торцом и поверхностью имеет еще одно важное следствие. Поверхность торца световода 11 и поверхность светочувствительной области фотодетектора 12 можно рассматривать как поверхности резонатора типа интерферометра Фабри-Перо. Изменение расстояния между поверхностями резонатора приводит к изменению условий резонанса - периодически (с периодом λ/2) реализуются условия образования стоячих волн. Это означает, что изменение расстояния приводит к существенному изменению конфигурации электромагнитного поля в светочувствительной области фотодетектора, а следовательно, к изменению вероятности поглощения фотонов электромагнитного поля. Таким образом, можно дополнительно управлять квантовой эффективностью однофотонного детектора и реализовывать оптимальные условия его работы.

Способ позиционирования кора оптического волокна над светочувствительной областью фотодетектора, включающий подведение кора оптического волокна к поверхности на расстояние , после чего кор оптического волокна перемещают параллельно поверхности фотодетектора до достижения минимума интенсивности, соответствующего первой дорожке электрического контакта, после чего перемещают кор оптического волокна по направлению дорожки к светочувствительной области фотодетектора, до момента увеличения интенсивности, соответствующего окончанию первой дорожки электрического контакта и далее, до момента уменьшения интенсивности соответствующего началу второй дорожке электрического контакта, устанавливают кор по середине, между первой и второй дорожками электрических контактов, после чего производят аналогичные действия для других осей, соответствующих другим парам дорожек электрических контактов, при этом используется свет, распространяющийся по кору оптического волокна, а длина волны света λ выбирается равной четырехкратной толщине дорожек электрических контактов.



 

Похожие патенты:

Изобретение относится к устройствам отображения. Устройство имеет лист квантовых точек для изменения цвета с помощью преобразования длины волны синего света, промежуточную раму, имеющую промежуточный опорный участок для поддержки участка переднего края световодной пластины, и дополнительный элемент, соединенный с промежуточным опорным участком и выполненный с возможностью отражения света, излучаемого из источника, для предотвращения выхода света, который излучается из источника света, через промежуток между световодной пластиной и промежуточным опорным участком.

Группа изобретений относится к оптическому волокну и ленте оптических волокон. Оптическое волокно содержит стеклянное волокно и слой смоляного покрытия, который покрывает внешнюю периферию стеклянного волокна, в котором слой смоляного покрытия имеет цветной слой, имеющий толщину 10 мкм или более, и в слое 16 смоляного покрытия содержится от 0,06 до 1,8 мас.% элемента титана, а лента оптических волокон содержит множество оптических волокон, расположенных параллельно, при этом множество оптических волокон соединены соединительным материалом.

Изобретение относится к области светотехники и может быть использовано в транспортных средствах для остекленения зданий, мебели или плоских светильников. Техническим результатом является расширение арсенала технических средств.

Изобретение относится к области оптических измерений, а именно к энергетической фотометрии, и может быть использовано в составе эталонной техники для метрологического обеспечения высокоточной поверки средств измерений средней мощности коллимированного лазерного излучения.

Изобретение относится к области электротехники и направлено на создание осветительной полосы, в которой уменьшено количество твердотельных осветительных элементов.

Изобретение относится к волоконной оптике, в частности к технологии изготовления кварцевых волоконных световодов с сердцевиной из фоторефрактивного стекла для изготовления волоконных брегговских решеток (ВБР).

Изобретение относится к средствам выполнения поиска и обработки информации. Технический результат заключается в повышении скорости распределенных операций счета и суммирования чисел в компьютерных кластерах.

Изобретение относится к оптическим волокнам. Оптическое волокно содержит сердцевину, при этом упомянутая сердцевина имеет внешний радиус r1, оболочку, окружающую упомянутую сердцевину, причем упомянутая оболочка имеет внешний радиус r4; первичное покрытие, окружающее упомянутую оболочку, причем упомянутое первичное покрытие имеет внешний радиус r5, упомянутое первичное покрытие имеет модуль упругости in situ не выше 0,50 МПа; и вторичное покрытие, окружающее упомянутое первичное покрытие, причем упомянутое вторичное покрытие имеет внешний радиус r6.

Настоящее изобретение относится к фторполимерной покровной композиции и к изделию, имеющему поверхность с низким коэффициентом трения. Указанная фторполимерная композиция содержит диспергированные в воде частицы фторированного гомополимера, диспергированные в воде частицы фторированного сополимера, диспергированные в воде частицы нефторированного полимера и по меньшей мере одно азиридиновое соединение, содержащее по меньшей мере две азиридиновые группы.

Изобретение относится к светоизлучающему прибору, содержащему источник света, выполненный с возможностью испускания во время работы света с первым спектральным распределением, и световод, выполненный с возможностью преобразования света с первым спектральным распределением в свет со вторым спектральным распределением.

Группа изобретений относится к волоконно-оптической технике и предназначено для использования в различных волоконно-оптических системах, использующих некогерентные источники излучения, в том числе в интроскопах, источниках дистанционного электропитания на базе световодов.

Изобретение относится к передаче сигналов по оптоволоконным кабелям, в частности к устройству для физического и оптического соединения оптического волокна для маршрутизации оптических сигналов.

Изобретение относится к технике связи и может использоваться для одновременной полнодуплексной передачи данных и мощности по одиночному оптическому волноводу. Технический результат состоит в повышении пропускной способности передачи сигналов.

Заявленное изобретение относится к элементам коннекторов для оптического волокна, в частности к устройству муфт в оптоволоконных коннекторах. Представленная муфта содержит корпус, поддерживающий концевой участок оптических волокон и имеющий внешнюю поверхность для выравнивания с комплементарной поверхностью выравнивающей втулки, где внешняя поверхность корпуса является в целом цилиндрической, имеющей профиль сечения поверхности контакта, которая в целом имеет овальную форму, причем корпус содержит две полумуфты, где множество продольных открытых канавок предусмотрены, по крайней мере, на поверхности одной из полумуфт, где полумуфта, имеющая множество канавок, сформирована из заготовки штамповкой, таким образом, определяя канавки по отношению к внешней поверхности полумуфты.

Данное изобретение относится к конструкциям муфты для оптического волокна, в частности герметической сборке для выравнивания оптического волокна, включающей муфту для выравнивания оптических волокон.

Изобретение относится к герметизации чипа датчика. Осуществляют металлизацию чипа датчика по тороидальному шаблону.

Изобретение предназначено для преобразования световой энергии в электрическую. Оптопара содержит источник света в виде шаровой ксеноновой лампы, фотопреобразователь в виде батареи солнечных элементов и корпус в виде трубы из диэлектрического материала, на внешней боковой поверхности которого имеются распределители потенциала.

Изобретение относится к области оптического приборостроения и касается системы детектирования одиночных фотонов. Система включает в себя приемный модуль с приемной зоной, блок ориентации, оптический модуль и световод, который имеет оболочку с первым и вторым окончаниями и сердцевину с первым и вторым концами.

Изобретение относится к волоконно-оптической технике и предназначено для использования при создании волоконно-оптических интроскопов и источников дистанционного электропитания на базе световодов.

Заявленная группа изобретений относится к устройствам для светоотверждения для полимеризации пломбировочных материалов, содержащим световод и устройство генерации света.
Наверх