Способ борьбы с засветкой астрономических приборов светом уличных осветительных приборов

Способ борьбы с засветкой астрономических приборов светом уличных осветительных приборов включает разделение периодов работы осветительных приборов и астрономических приборов по времени. Формируют импульсный световой поток осветительных приборов с частотой в диапазоне 300-1000 Гц и скважностью в диапазоне 2-10, а перекрытие светового потока в светочувствительную матрицу астрономического прибора осуществляют в импульсном режиме с синхронизацией по частоте и в противофазе с частотой сформированного светового потока. Технический результат - улучшение защиты астрономических приборов от засветки. 12 з.п. ф-лы, 2 ил.

 

Изобретение относится к области уличного (наружного) освещения, в частности к способам управления излучением света, а также к области оптических приборов, в частности к способам борьбы с засветкой астрономических приборов.

Наружное освещение является одним из главных видов светового загрязнения атмосферы вблизи городов, автострад и промышленных объектов. При этом световое загрязнение существенно усложняет работу обсерваторий, работающих в оптическом диапазоне. Так, например, Гринвичская лаборатория уже довольно давно полностью прекратила наблюдения на собственной территории из-за своего расположения в черте Лондона. Подобные проблемы испытывают многие другие обсерватории, расположенные вблизи крупных городов или промышленных объектов.

Существует два основных способа борьбы со световым загрязнением от уличного освещения.

В первом способе освещение организуется с помощью специальных светильников, формирующих направленный вниз поток света. Такой поток освещает тротуары и проезжую часть, но не освещает собственно небо (например, US 5599091, US 7083307 B2, US 7217007 B2, US 7264380 B1, US 20080285284 A1).

Недостатком такого решения является низкая освещенность других участков публичного пространства, что может быть неприемлемо из соображений комфортности жилой и общественной зон. В частности, метод непригоден для подсветки зданий и сооружений, световых вывесок и рекламы. Кроме того, отраженный от поверхности тротуаров и проезжей части свет также освещает небо и ведет к световому загрязнению, хотя и в меньшей степени, чем в случае прямого освещения неба.

Второй способ заключается в использовании в осветительной системе монохроматического (или близкого к нему) света. Обычно для этого используются натриевые лампы низкого давления, имеющие весьма узкий спектр. Узкая спектральная полоса легко может быть вырезана оптическими или цифровыми методами.

Недостатками этого решения являются:

- Некомфортный формат освещения

- Невозможность применения для световой рекламы, подсветки и т.п.

В заявляемом изобретении используется разделение времени работы осветительной системы и времени накопления фотоприемника астрономического прибора. Предлагается организовать уличное освещение импульсным источником света. На время действия импульсов света накопление информации в фотоприемнике прерывается специальным затвором. Этот затвор может быть внешним (электронным, электрооптическим или электромеханическим) или внутренним (этот режим реализуется подачей соответствующих потенциалов на управляющие электроды фотоприемника).

Частота прерывания должна превышать 300 Гц, так как пульсации освещения с частотой более 300 Гц не воспринимаются зрением человека.

Все светильники осветительной системы должны быть синхронизированы так, чтобы они:

- Выдавали световой импульс одной частоты и продолжительности.

- Включение/выключение отдельных светильников сдвинуто друг относительно друга так, чтобы в момент прихода к фотоприемному устройству световые импульсы совпадали по фазе.

Поскольку светильники системы находятся на разном расстоянии от фотоприемника, время, за которое свет от светильника достигает фотоприемника, может отличаться на десятки микросекунд (свет проходит расстояние 1 км за 3,3 мкс). Для этого необходимо обеспечить источники питания регулируемыми устройствами синхронизации и задержки.

Технический результат достигается тем, что в способе борьбы с засветкой астрономических приборов светом уличных осветительных приборов путем разделения периодов работы осветительных приборов и астрономических приборов во времени, при котором формируют импульсный световой поток осветительных приборов с частотой в диапазоне 300-1000 Гц и скважностью в диапазоне 2-10, перекрытие светового потока в светочувствительную матрицу астрономического прибора осуществляют в импульсном режиме с синхронизацией по частоте и в противофазе с частотой сформированного светового потока.

Перекрытие светового потока осуществляют с использованием затвора.

Перекрытие светового потока осуществляют с использованием электронного затвора.

Перекрытие светового потока осуществляют с использованием электрооптического затвора.

Перекрытие светового потока осуществляют с использованием электромеханического затвора.

Перекрытие светового потока осуществляют с использованием внешнего электромеханического затвора.

Перекрытие светового потока осуществляют с использованием внутреннего электромеханического затвора.

Формирование светового потока осуществляют с использованием светодиодных светильников.

Тактирование импульсов светового потока осуществляют сигналом точного времени, полученным по системе GPS, Глонас или иной общедоступной системе, передающей сигналы точного времени.

Тактирование импульсов светового потока осуществляют с использованием проводной связи.

Тактирование импульсов светового потока осуществляют с использованием оптоволоконной связи.

Формирование светового потока осуществляют с использованием по меньшей мере двух источников света.

Формирование светового потока осуществляют таким образом, что импульсы разных источников света, находящихся на разном расстоянии от астрономического прибора, формируются со сдвигом по фазе с таким расчетом, чтобы импульсы приходили к телескопу одновременно.

Осуществление изобретения поясняется с помощью фигур: на фиг. 1 представлена временная диаграмма излучения светового потока источниками наружного освещения и перекрытия затвором фотоприемника астрономического прибора, а на фиг. 2 - схема, отражающая осуществление заявленного способа:

1. Астрономический прибор;

2. Затвор;

3. Приемная матрица астрономического прибора;

4. Импульсный источник питания затвора;

5. Источник синхронизирующего сигнала;

6. Импульсный источник питания светильника;

7. Светильник.

Питание светильников U1 включается на время t1. Скважность импульсов питания (отношение t1 к периоду Т) составляет 2-10. В это время питание затворов Us отсутствует.

После выключения питания светильников включается питание затворов телескопа Us. В это время питание светильников выключено.

После выключения питания затворов телескопа включается питание светильников.

Период прохождения импульсов обоих источников питания одинаков и составляет не более 3 миллисекунд, предпочтительно 1-2 миллисекунды.

Синхронизация импульсов питания всех блоков питания осуществляется регулируемыми устройствами синхронизации и задержки. В качестве синхронизирующего сигнала может использоваться либо специальный источник периодического сигнала с точностью не хуже 10 микросекунд, предпочтительно - не хуже 1 микросекунды, либо сигнал точного времени, полученный по системе GPS, Глонас или иной общедоступной системе, передающей сигналы точного времени.

1. Способ борьбы с засветкой астрономических приборов светом уличных осветительных приборов путем разделения периодов работы осветительных приборов и астрономических приборов во времени, при котором формируют импульсный световой поток осветительных приборов с частотой в диапазоне 300-1000 Гц и скважностью в диапазоне 2-10, перекрытие светового потока в светочувствительную матрицу астрономического прибора осуществляют в импульсном режиме с синхронизацией по частоте и в противофазе с частотой сформированного светового потока.

2. Способ по п. 1, отличающийся тем, что перекрытие светового потока осуществляют с использованием затвора.

3. Способ по п. 2, отличающийся тем, что перекрытие светового потока осуществляют с использованием электронного затвора.

4. Способ по п. 2, отличающийся тем, что перекрытие светового потока осуществляют с использованием электрооптического затвора.

5. Способ по п. 2, отличающийся тем, что перекрытие светового потока осуществляют с использованием электромеханического затвора.

6. Способ по п. 5, отличающийся тем, что перекрытие светового потока осуществляют с использованием внешнего электромеханического затвора.

7. Способ по п. 5, отличающийся тем, что перекрытие светового потока осуществляют с использованием внутреннего электромеханического затвора.

8. Способ по п. 1, отличающийся тем, что формирование светового потока осуществляют с использованием светодиодных светильников.

9. Способ по п. 1, отличающийся тем, что тактирование импульсов светового потока осуществляют сигналом точного времени, полученным по системе GPS, Глонас или иной общедоступной системе, передающей сигналы точного времени.

10. Способ по п. 1, отличающийся тем, что тактирование импульсов светового потока осуществляют с использованием проводной связи.

11. Способ по п. 1, отличающийся тем, что тактирование импульсов светового потока осуществляют с использованием оптоволоконной связи.

12. Способ по п. 1, отличающийся тем, что формирование светового потока осуществляют с использованием по меньшей мере двух источников света.

13. Способ по п. 12, отличающийся тем, что формирование светового потока осуществляют таким образом, что импульсы разных источников света, находящихся на разном расстоянии от астрономического прибора, формируются со сдвигом по фазе с таким расчетом, чтобы импульсы приходили к астрономическому прибору одновременно.



 

Похожие патенты:
Катадиоптрический телескоп может быть использован для обнаружения и каталогизации космических объектов в области спектра 400-850 нм. Катадиоптрический телескоп содержит главное вогнутое сферическое зеркало 1, корректирующий элемент 2 и установленный перед фокальной плоскостью телескопа линзовый компенсатор внеосевых аберраций 3, состоящий из афокальной 3(1) и силовой 3(2) частей.

Комплекс может быть использован для наблюдения небесных тел в ясную, пасмурную и дождливую погоду. Комплекс содержит наземный телескоп с блоком управления, его защитное укрытие с его блоком управления, наземный пункт управления комплексом.

Голографический коллиматорный прицел с синтезированным зрачком содержит лазерный диод, коллимирующий объектив, дифракционную решетку пропускающего типа, голографический формирователь неподвижной метки в виде объемной пропускающей голограммы, стеклянную пластинку, выполняющую роль световода.

Оптическая система прицела состоит из расположенных по ходу лучей объектива, плоскопараллельной пластинки с прицельной маркой и шкалами, оборачивающей системы, полевой диафрагмы и окуляра.

Оптическое устройство относится к оптическому приборостроению и может быть использовано в устройствах, предназначенных для внешнетраекторных измерений в космической геодезии и полигонных измерениях.

Телескоп // 2603820
Предлагаемое изобретение относится к области контрольно-измерительной техники, а именно к телескопическим оптическим системам, используемым для измерения параллельности визирных осей двух или более контролируемых оптических систем в видимом диапазоне спектра.

Изобретение относится к области обработки изображений и, в частности, к способу обнаружения движущегося объекта в захваченных изображениях, например, космических обломков.

Способ исследования изменений климата Земли заключается в том, что измерительную систему, включающую два идентичных оптических телескопа, располагают на видимой поверхности Луны.

Изобретение относится к области обработки изображений, в частности к способу обнаружения движущегося объекта, например космических обломков, исходя из захваченных изображений.

Изобретение может быть использовано, например, в лазерных дальномерах. Телескопическая оптическая система типа Галилея состоит по ходу лучей из объектива и окуляра.

Изобретение относится к области электротехники и предназначено для использования в устройствах автоматической и полуавтоматической блокировки железнодорожного транспорта, в качестве источника света в сигнальных установках (светофорах) железнодорожного транспорта и метрополитена с контролем работоспособности во включенном и выключенном состоянии.

Изобретение раскрывает осветительное устройство, которое содержит источник света (110), соединительную структуру (120), содержащую цоколь (122, 124), предусмотренный на ее конце, и передаточный механизм (130); при этом цоколь электрически соединен с источником света; передаточный механизм содержит приводной компонент (132), подвижно соединенный с компонентом (134) вращения, на котором установлен цоколь, причем движение приводного компонента относительно компонента вращения заставляет компонент вращения с колпачком поворачиваться.

Группа изобретений относится к многофункциональному центральному верхнему стоп-сигналу для транспортного средства. Блок стоп-сигнала включает в себя корпус стоп-сигнала, наружную крышку фонаря, защелку, исполнительный механизм, лампу общего освещения и датчик.

Изобретение относится к области светотехники и может быть использовано для экстренного освещения. Техническим результатом мобильного осветительного комплекса является расширение функциональных возможностей.

Группа изобретений относится к строительным элементам зданий. Светоизлучающая акустическая панель, которая может монтироваться на потолке, содержит звукопоглощающий слой и светопропускающий слой, которые скомпонованы параллельно таким образом, что между ними сформировано пространство.

Изобретение относится к области электротехники и направлено на создание осветительной полосы, в которой уменьшено количество твердотельных осветительных элементов.

Изобретение относится к области светотехники и может быть использовано при изготовлении подвесных линейных модульных светильников. Техническим результатом является упрощение сборки и демонтировки светильника.
Изобретение относится к осветительной технике и может быть использовано для местного освещения рабочих мест мелкого сборочного производства, офисных рабочих мест.

Изобретения относятся к области светотехники и предназначены для использования в помещениях, в том числе с повышенной влажностью или запыленностью. Техническим результатом является расширение возможности управления диаграммами направленности излучения светильника и обеспечение высокой равномерности освещения.

Изобретение относится к области светотехники, в частности к поисковым и осветительным прожекторам с излучением в различных диапазонах волн твердотельными полупроводниковыми источниками, и может быть использовано для поиска и наблюдения объектов при установке на транспортные средства.

Изобретение относится к области светотехники, а именно к полупроводниковым осветительным устройствам, и предназначено для использования в составе осветительного оборудования общего назначения. Техническим результатом изобретения является упрощение конструкции, улучшение теплового режима работы светодиодов и уменьшение габаритов изделия. Светодиодная лампа общего назначения содержит светорассеиватель, светодиоды, полый радиатор с поверхностью для установки цоколя, выполненный из теплопроводного электроизоляционного материала, металлический теплоотвод, установленный в полости упомянутого радиатора, выполненный в виде тонкостенной детали с дном, на поверхности которого размещены упомянутые светодиоды, и цоколь. Полость радиатора и металлический теплоотвод имеют форму усеченной многогранной пирамиды, вершиной обращенной к цоколю, количество граней которой выбрано из выражения, приведенного в формуле. 3 з.п. ф-лы, 5 ил.
Наверх