Способ получения пьезокерамического материала



Способ получения пьезокерамического материала
Способ получения пьезокерамического материала
C04B35/62615 - Формованные керамические изделия, характеризуемые их составом (пористые изделия C04B 38/00; изделия, характеризуемые особой формой, см. в соответствующих классах, например облицовка для разливочных и плавильных ковшей, чаш и т.п. B22D 41/02); керамические составы (содержащие свободный металл, связанный с карбидами, алмазом, оксидами, боридами, нитридами, силицидами, например керметы или другие соединения металлов, например оксинитриды или сульфиды, кроме макроскопических армирующих агентов C22C); обработка порошков неорганических соединений перед производством керамических изделий (химические способы производства порошков неорганических соединений C01)

Владельцы патента RU 2663223:

Акционерное общество "Научно-исследовательский институт физических измерений" (RU)

Изобретение относится к технологии пьезоэлектрической керамики и может быть использовано при изготовлении керамики на основе ниобата-цирконата-титаната свинца для ультразвуковых устройств, различных пьезодатчиков. Технический результат изобретения - повышение значений пьезоэлектрических параметров пьезокерамического материала и снижение энергоемкости технологического процесса за счёт снижения температуры синтеза и спекания. В способе получения пьезокерамического материала, включающем приготовление навесок исходных компонентов: PbO, ZnO, Nb2O3, ТiO2, и ZrO2, механическую активацию с помощью тонкодисперсного помола, синтез до получения твердого раствора, прессование и спекание, согласно изобретению механическую активацию проводят мокрым измельчением в течение 3 часов в кислой среде, содержащей лимонную кислоту, олеиновую кислоту, изопропиловый спирт и воду, при следующем соотношении компонентов, мас.%: лимонная кислота 0,2-1,8, олеиновая кислота 0,1-0,3, изопропиловый спирт 1-5, вода дистиллированная 48–52, компоненты шихты – остальное. Синтез проводят при температуре 760-780°С. 1 пр., 1 табл.

 

Изобретение относится к технологии пьезоэлектрической керамики с низкими температурами синтеза и спекания, обладающих высокими значенииями пьезоэлектрических параметров, и может быть использовано при изготовлении керамики на основе ниобата-цирконата-титаната свинца для ультразвуковых устройств, различных пьезодатчиков.

Известен способ получения пьезокерамического материала, включающий смешивание исходных компонентов, сухое смешивание и измельчение в мельнице, синтез шихты пьезокерамики из полученной смеси прокалкой, измельчение синтезированной шихты, прессование заготовок из измельченной шихты и спекание [Авторское свидетельство СССР №143378, опубликовано в 1961 г. ].

Недостатком сухого измельчения является низкая активность получаемой смеси исходных компонентов, что требует повышения температур синтеза шихты. Повышение температуры синтеза шихты требует повышения температуры последующего спекания заготовок.

Известен также способ получения пьезоэлектрических керамических материалов, в котором применяется метод механохимической активации смеси исходных компонентов [патент США 6,627,104 В1, опубликовано в 2003 г.]. Способ получения включает мокрое смешивание исходных компонентов и механическую активацию смеси в течение 10-48 часов в шаровой мельнице; сушку; синтез; изостатическое прессование синтезированного порошка в таблетки при давлениях 50-350 МПа; спекание.

Недостатками данного способа являются длительность мокрого смешивания и высокое давление изостатического прессования.

Наиболее близким по технической сущности к заявляемому изобретению является способ получения пьезокерамического материала, включающий приготовление навесок исходных компонентов: PbO, ZnO, Nb2O3, TiO2 и ZrO2, смешивание и измельчение в мельнице в течение 10-18 часов, синтез до получения твердого раствора, введение добавок оксидов галлия и марганца по 0,1-0,5 мас.%, прессование и спекание [Патент республики Беларусь №13718, опубликован в 2010 г.], принимаемый за прототип настоящего изобретения.

Недостатками данного способа являются высокая энергоемкость технологического процесса, обусловленная длительностью измельчения шихты и низкое качество пьезокерамического материала, обусловленное необходимостью введения добавок оксидов галлия и марганца для активирования спекания пьезокерамики, что снижает диэлектрическую проницаемость и пьезочувствительность керамики.

Цель изобретения - повышение качества пьезокерамического материала на основе оксидов свинца, цинка, ниобия, титана, циркония и снижение энергоемкости технологического процесса.

Поставленная цель достигается тем, что в способе получения пьезокерамического материала, включающем приготовление навесок исходных компонентов: PbO, ZnO, Nb2O3, ТiO2, и ZrO2, механическую активацию с помощью тонкодисперсного помола, синтез до получения твердого раствора, прессование и спекание, согласно изобретению механическую активацию проводят мокрым измельчением в течение 3 часов в кислой среде, содержащей лимонную кислоту, олеиновую кислоту, изопропиловый спирт и воду при следующем соотношении компонентов, мас.%:

лимонная кислота - 0,2-1,8

олеиновая кислота - 0,1-0,3

изопропиловый спирт - 1-5

вода дистиллированная -48-52

компоненты шихты - остальное, синтез проводят при температуре 760-780°С.

Лимонная и олеиновая кислоты частично растворяют оксид свинца с образованием в водной среде гидрооксида свинца. Молекулы изопропилового спирта, связываясь с катионами свинца, образуют нерастворимые комплексы, которые оседают на поверхности частиц в виде активных гелеобразных прослоек. В результате заметно повышается активность исходных компонентов (в частности, тугоплавких оксидов титана, ниобия и циркония) к синтезу, позволяющая снизить длительность мокрого измельчения до 3 часов при сохранении низкой температуры синтеза 760-780°С. Снижение температуры синтеза позволяет получить более активные к спеканию тонкодисперсные порошки пьезокерамики, позволяющее уменьшить температуру спекания сырых прессованных заготовок пьезокерамики до 950-1000°С без введения добавок оксидов галлия и марганца.

Пример

Проводили мокрое измельчение в шаровой мельнице Planetary Mill pulverisette 5 (Fritsch) с барабаном и шарами из стабилизированной иттрием керамики диоксида циркония в течение 3 часов смеси оксидов и карбонатов, соответствующей формуле Рb(Тi0,48Zr0,52)0.4(Zn1/3Nb2/3)0.6O3: оксида свинца (РbO) ТУ6-09-5382-88 марки «ч.д.а.», оксида титана (ТiO2) ТУ6-09-3811-79 марки «ОСЧ 7-3», оксида циркония (ZrO2) ГОСТ 21907-76 марки «Цро-1», оксида цинка (ZnO) ГОСТ 10262-73 марки «х.ч.», оксида ниобия (Nb2O5) ТУ 1763-019-00545484-2000 марки «х.ч.» и лимонной кислоты (ГОСТ 908-2004), олеиновой кислоты (ГОСТ 845-2002) изопропилового спирта (ТУ 6-09-402-87). Соотношение по массе количества исходной шихты и мелющих тел составило 1:3. Для сравнения проводили мокрое измельчение смеси исходных компонентов согласно прототипу без добавок с последующим измельчением синтезированной шихты с введением оксидов галлия (Ga2O3) ТУ 6-09-3729-80 марки «хч», и марганца (МnO2) ГОСТ 4470-79 марки «ч» по 0,3 мас.% соответственно.

После сушки приготовленные смеси прокаливали в печи Nabertherm LH 60/13 при температуре 750 - 800°С. Время нахождения шихты в зоне с максимальной температурой в печи составило 3 часа. Синтезированную шихту измельчали мокрым способом в шаровой мельнице в течение 2 часов с добавлением дистиллированной воды в количестве 40% мас. Суспензии после мокрого измельчения сушили в сушильном шкафу при 80°С. После сушки в шихту вводили 3% раствор поливинилового спирта в количестве 10 мас.% и приготавливали гранулированные порошки, из которых прессовали заготовки в виде таблеток. Полученные заготовки спекали в печи Nabertherm LH 60/13 в интервале температур от 940 до 1010°С 3 часа. После шлифовки по диаметру таблетки резали на диски толщиной 1 мм. На поверхности дисков наносили металлизацию из серебросодержащей пасты с последующим вжиганием при 850°С. Для контроля параметров проводили поляризацию дисков в электрическом поле с напряженностью 1,5 кВ/м.

Данные о влиянии измельчения по предлагаемому способу и прототипу на свойства полученных дисков приведены в таблице. Результаты получены усреднением десяти замеров.

Как видно из данных таблицы, использование предлагаемого способа получения пьезокерамического материала согласно формуле позволяет повысить величину пьезомодуля d33, плотности ρ и относительной диэлектрической проницаемости ε33 по сравнению с прототипом, уменьшить длительность механической активации, обеспечить низкую температуру синтеза шихты и температуру спекания без добавок оксидов галлия и марганца.

Следовательно, предлагаемое техническое решение, включающее мокрое измельчение шихты на основе оксидов свинца, цинка, ниобия, титана, циркония в кислой среде с использованием лимонной кислоты, олеиновой кислоты и изопропилового спирта, позволяет повысить качество пьезокерамического материала и снизить энергоемкость технологического процесса.

Способ получения пьезокерамического материала, включающий смешивание исходных компонентов: PbO, ZnO, Nb2O3, TiO2, и ZrO2, механическую активацию с помощью тонкодисперсного помола, синтез до получения твердого раствора, прессование и спекание, отличающийся тем, что механическую активацию проводят мокрым измельчением в течение 3 часов в кислой среде, содержащей лимонную кислоту, олеиновую кислоту, изопропиловый спирт и воду при следующем соотношении компонентов, мас.%:

лимонная кислота 0,2-1,8
олеиновая кислота 0,1-0,3
изопропиловый спирт 1-5
вода дистиллированная 48-52
компоненты шихты остальное,

синтез проводят при температуре 760-780°C.



 

Похожие патенты:

Изобретение относится к изготовлению керамического материала высокой плотности на основе гексагонального нитрида бора (ГНБ), который имеет большие перспективы применения в авиационно-космической промышленности.

Изобретение относится к области углерод-углеродных композиционных материалов (УУКМ) и может быть использовано в ракетно-космической технике. Углерод-углеродный композиционный материал содержит каркас в виде иглопробивного материала из дискретных по длине углеродных волокон и пироуглеродную матрицу, имеющую изотропную структуру.

Изобретение относится к огнеупорному изделию на основе бета-глинозёма, которое выполнено в виде блока формования стеклянного листа путем переливания. Огнеупорное изделие имеет общее содержание Al2O3 приблизительно от 50 до 97%, причем Al2O3 содержит альфа-Al2O3 и бета-глинозем.

Изобретение относится к производству облицовочных материалов. Сырьевая смесь для получения облицовочного материала содержит, мас.%: измельченное до прохождения через сито №2,5 стекловолокно 92,0-93,0; глина 3,0-4,0; молотое до прохождения через сито №2,5 листовое и/или тарное стекло 1,0-2,0; портландцемент 2,0-3,0.

Изобретение относится к производству керамических проппантов, предназначенных для использования в качестве расклинивающих агентов при добыче углеводородов методом гидравлического разрыва пласта.

Изобретение относится к способу получения наноструктурированного керамического материала на основе нитрида кремния Si3N4, модифицированного углеродом. Материал может быть использован для изготовления пластин для бронежилетов, а также различных компонент изделий, требующих повышенную твердость и трещиностойкость.

Изобретение относится к огнеупорной промышленности и используется в качестве компонента (формовочного блока), находящегося в контакте с расплавленным стеклом при его вытягивании из расплава в виде листа.

Изобретение относится к технологии получения керамических композитов с улучшенными механическими, экологическими и декоративными характеристиками и может быть использовано для производства ответственных технических и/или декоративных и ювелирных изделий, таких как корпус часов, циферблат, а также в иных областях народного хозяйства.

Изобретение относится к огнеупорной промышленности, в частности к производству огнеупорных пластичных масс, предназначенных для уплотнения зазора между футеровкой сталеразливочного ковша и обортовкой кожуха ковша, уплотнений в стыках огнеупорной кладки тепловых агрегатов, ремонта и восстановления разрушенных участков огнеупорной кладки.

Изобретение относится к области разработки новых керамических редкоземельных оксидных материалов с магнитным состоянием спинового стекла и может найти применение в химической промышленности и электронной технике, в частности, для разработки моделей новых типов устройств магнитной памяти.

Изобретение относится к химической технологии, а именно к получению особо чистых субмикронных порошков алюмомагниевой шпинели с узким распределением частиц по размерам для использования в технологии оптически прозрачной керамики.

Изобретение относится к производству керамических проппантов, предназначенных для использования в качестве расклинивающих агентов при добыче углеводородов методом гидравлического разрыва пласта.

Изобретение относится к способу получения наноструктурированного керамического материала на основе нитрида кремния Si3N4, модифицированного углеродом. Материал может быть использован для изготовления пластин для бронежилетов, а также различных компонент изделий, требующих повышенную твердость и трещиностойкость.

Изобретение относится к способу получения наноструктурированного керамического материала на основе нитрида кремния Si3N4, модифицированного углеродом. Материал может быть использован для изготовления пластин для бронежилетов, а также различных компонент изделий, требующих повышенную твердость и трещиностойкость.

Изобретение относится к технологии получения керамических композитов с улучшенными механическими, экологическими и декоративными характеристиками и может быть использовано для производства ответственных технических и/или декоративных и ювелирных изделий, таких как корпус часов, циферблат, а также в иных областях народного хозяйства.

Изобретение относится к области разработки новых керамических редкоземельных оксидных материалов с магнитным состоянием спинового стекла и может найти применение в химической промышленности и электронной технике, в частности, для разработки моделей новых типов устройств магнитной памяти.
Изобретение относится к зернам для изготовления керамических изделий, состоящих, по большей части, из недоксидов титана. Расплавленные зерна состоят из фаз недоксидов титана, отвечающих формуле TinO2n-1, в которых указанные фазы являются Ti5O9 или Ti6O11 или смесью двух этих фаз.

Изобретение относится к технологии получения карбида кремния для изготовления приборов СВЧ-техники, оптоэлектроники и силовой техники. Карбид кремния получают из шихты, содержащей нанопорошки кремнийсодержащего (SiO, SiO2, H2SiO3) и углеродсодержащего (углевод общей формулы Cn(H2O)m, где n≥12; m=n-1, многоатомный спирт общей формулы CnH2n+2On, где n≥2, альдегидные либо кетонные производные многоатомных спиртов общей формулы (CH2O)n, где n≥3 компонентов, приготовленной в деионизованной воде, с последующим ступенчатым нагревом в три стадии: до температуры 145-195°C с выдержкой 1,5-3 ч, до 800-1000°C с выдержкой 0,4-1 ч и до 1450-1650°C с выдержкой в течение 1-1,5 ч.

Изобретение относится к области порошковой металлургии, а именно получению изделий из материалов на основе нитрида кремния, которые могут широко использоваться в авиационной и космической промышленности, а также ракетостроении и других отраслях современной техники.

Изобретение относится к составам на основе зольного уноса и может быть использовано для изготовления сравнительно тонких керамических изделий. Состав на основе зольного уноса формируют из смеси на основе зольного уноса, содержащей более 70% зольного уноса по сухому весу состава, пластификатор, служащий для связки частиц зольного уноса в составе, и, по желанию, одну или более керамических добавок.

Изобретение относится к пьезоэлектрическим керамическим материалам на основе титаната свинца и может быть использовано в низкочастотных приемных устройствах - гидрофонах, микрофонах, сейсмоприемниках, а также в приборах медицинской диагностики, Работающих на нагрузку с низкоомным входным сопротивлением.
Наверх