Способ получения магнитного масла

Изобретение относится к области получения магнитных масел на основе высокодисперсного магнетита. Изобретение может быть использовано в машиностроении, приборостроении, в медицине и т.д. Способ получения магнитных масел включает получение наночастиц магнетита, их стабилизацию поверхностно-активным веществом с последующим добавлением жидкости-носителя. Согласно изобретению поверхностно-активное вещество и жидкость-носитель выбирают из следующего условия - Е=⏐εрr⏐/εр, где Е - критериальный параметр, εр - диэлектрическая проницаемость поверхностно-активного вещества, εr - диэлектрическая проницаемость жидкости-носителя, при этом критериальный параметр Е равен от 0 до 0,2. Техническим результатом является повышение коллоидной устойчивости и создание стабильной намагниченности магнитного масла, что обеспечивает стабильный коэффициент трения и износостойкость в течение длительного времени при использовании магнитного масла в трибосопряжении и, как следствие, увеличение ресурса работы узла трения. 2 табл., 2 пр.

 

Изобретение относится к области получения магнитных масел на основе высокодисперсного магнетита. Изобретение может быть использовано в машиностроении, приборостроении, в медицине и т.д.

Известен способ получения магнитной жидкости, включающий получение наночастиц магнетита, последующую их стабилизацию поверхностно-активным веществом (ПАВ) и диспергирование стабилизированных наночастиц магнетита в жидкости-носителе (RU №2394295, кл. H01F 1/28, H01F 1/44, опубл. 10.07.2010).

Недостатком данного способа является низкая коллоидная устойчивость магнитного масла из-за большого количества агломерированных магнитных частиц и низкой прочности адсорбированных слоев ПАВ.

Известен способ получения магнитного масла, включающий образование наночастиц магнетита, покрытие поверхности наночастиц магнетита стабилизирующим веществом в среде углеводорода (RU №2597376, кл. H01F 1/44, C01G 49/08, опубл. 10.09.2016).

Недостатками способа являются малая температурно-временная стабильность коллоида и низкая коллоидная устойчивость магнитного масла, обусловленные десорбцией ПАВ в зоне трибоконтакта и образованием агломератов, приводящих к абразивному износу конструкционных деталей узлов трения.

Наиболее близким к предлагаемому является способ получения магнитного масла (RU №2502792, кл. С10М 169/04, С10М 125/10, опубл. 27.12.2013), включающий получение наночастиц магнетита, их стабилизацию ПАВ с последующим добавлением жидкости-носителя.

Однако масло, полученное по этому способу, не обладает высокой коллоидной устойчивостью в магнитном поле, что обусловлено низким взаимодействием между молекулами ПАВ-стабилизатора и жидкостью-носителем, что приводит к десорбции ПАВ и образованию агломератов из частиц магнетита и, как следствие, к их осаждению из коллоида.

Технической проблемой данного изобретения является разработка способа получения магнитного масла, позволяющего уменьшить десорбцию ПАВ-стабилизатора и образование агломератов из частиц магнетита.

Техническим результатом является повышение коллоидной устойчивости и создание стабильной намагниченности магнитного масла, что обеспечивает стабильный коэффициент трения и износостойкость в течение длительного времени при использовании магнитного масла в трибосопряжении и, как следствие, увеличение ресурса работы узла трения.

Указанная проблема решается за счет того, что способ получения магнитных масел включает получение наночастиц магнетита, их стабилизацию поверхностно-активным веществом с последующим добавлением жидкости-носителя. Согласно изобретению, поверхностно-активное вещество и жидкость-носитель выбирают из следующего условия Е=⏐εрr⏐/εр, где Е - критериальный параметр, εр - диэлектрическая проницаемость поверхностно-активного вещества, εr - диэлектрическая проницаемость жидкости-носителя, при этом критериальный параметр Е равен от 0 до 0,2.

Выбор поверхностно-активного вещества и жидкости-носителя при условии Е=⏐εpr⏐/εp определено экспериментально. При значении критериального параметра Е, близком к 0, наблюдали максимальную коллоидную устойчивость магнитного масла, объем отделившейся дисперсионной среды практически отсутствовало, а относительное уменьшение намагниченности магнитного масла - минимально. При Е больше 0,2 объем отделившейся дисперсионной среды достигал более четверти всего объема магнитного масла, а относительное уменьшение намагниченности магнитного масла составляло до 100%.

Причина зависимости коллоидной устойчивости магнитного масла от диэлектрических характеристик ПАВ и жидкости-носителя объясняется следующим. Агрегация магнитных частиц (без лиофилизирующего поверхностного слоя) начинается под действием сил притяжения Ван-дер-Ваальса и магнитных сил и заканчивается, когда борновская сила отталкивания скомпенсирует их. Расстояние между частицами соответствует положению минимума потенциальной энергии и по порядку величины равно атомарному размеру. Сила Стокса лишь замедляет процесс коагуляции, а тепловое броуновское движение может даже его ускорить.

Из всех составляющих силу Ван-дер-Ваальса слагаемых, при агрегации определяющую роль играют дисперсионные силы, которые приближенно описывается уравнением Гамакера. Величина силы, в частности, зависит от квадрата поляризуемости молекул жидкости-носителя. В свою очередь поляризуемость молекул выражается из уравнения Клаузиуса-Моссотти через диэлектрическую проницаемость εr среды. При этом из сложной константы Гамакера вытекает, что жидкая прослойка между частицами может значительно изменить силу их взаимодействия.

Для стабилизации магнитного масла используют так называемый структурно-механический барьер, проявление которого возможно только после образования на поверхности магнитных частиц адсорбционного (защитного) слоя из молекул ПАВ, лиофилизирующего поверхность. Механическая упругость такого межфазного слоя не позволяет частицам при сближении образовывать устойчивые конгломераты, которые не смогут самопроизвольно разрушаться за счет броуновского движения. Такой эффект, называемый стерическим фактором стабилизации, может быть эффективно реализован, только когда молекулы адсорбционного слоя прочно связаны с поверхностью частиц и между собой, в противном случае защитный слой может разрушаться при столкновении частиц, и они смогут слипаться.

При физической адсорбции взаимодействие молекул с поверхностью определяется электростатической составляющей силы Ван-дер-Ваальса, и диэлектрическая проницаемость дисперсионной среды и адсорбата в этом процессе большой роли не играет. Однако взаимодействие молекул между собой происходит за счет индуцированных и дисперсионных сил, каждая из которых зависит от поляризуемости молекул, а значит и от диэлектрической проницаемости εр ПАВ.

Защитный слой на частицах может разрушаться не только за счет механических воздействий, но и при термоактивированной десорбции молекул с поверхности в жидкость-носитель. С молекулярной точки зрения, вероятность перехода адсорбированных молекул в раствор тем выше, чем выше их абсолютное значение энергии в сольватной оболочке, состоящей из дисперсионной среды. Другими словами, чем лучше растворяются молекулы адсорбата в жидкости-носителе, тем активнее они десорбируются. Взаимодействие молекул в растворе ПАВ определяется, в частности, ориентационным силами для молекул, имеющих не нулевой дипольный момент и одновременно индуцированными и дисперсионными силами. Все эти силы зависят от диэлектрической проницаемости εr жидкости-носителя и ПАВ εр.

При высокой поляризуемости молекул жидкости-носителя и наличии у них дипольного момента возможна конкуренция между ними и молекулами ПАВ при адсорбции на активных центрах на поверхности дисперсных частиц. Адсорбированные молекулы жидкости-носителя несомненно менее надежно препятствуют сближению дисперсных частиц.

Сущность изобретения иллюстрируется следующими примерами.

Пример 1

Для получения магнитного масла брали 20 г магнетита, его обработку проводили в 25 г олигоэфира ОЭ-3, полученного на основе 12-оксистеариновой кислоты, используемого в качестве ПАВ, с диэлектрической проницаемостью εр=4,95. Полученную смесь добавляли в 55 г жидкости-носителя, нагревали до температуры 150°С и выдерживали в течение 10 ч. После чего полученное масло охлаждали до комнатной температуры. Исходная намагниченность магнитного масла была около 30 кА/м. Использовали жидкости-носители слабополярной природы.

В таблице 1 приведены некоторые физико-химические свойства используемых жидкостей-носителей для дисперсионной среды.

где η - вязкость жидкости, εr - диэлектрическая проницаемость, μ - дипольный момент, Jот - отношение намагниченности магнитной жидкости после центрифугирования к исходной намагниченности, Е - критериальный параметр.

Для экспресс-оценки стабилизирующей способности ПАВ полученные магнитные масла испытывали на устойчивость в поле центробежных сил при комнатной температуре 20-22°С. Фиксированный объем магнитной жидкости - 40 мл загружали в лабораторную центрифугу Т-23 и выдерживали в течение 2 часов при центробежном ускорении около 5600g. По окончании контролировали отделение дисперсионной среды и фиксировали падение намагниченности из-за перехода магнетита в осадок. Для определения магнитных свойств полученных магнитных масел применялся магнетометр, реологические свойства масел изучались на ротационном вискозиметре, для измерения диэлектрической проницаемости использовался промышленный измеритель электрической емкости Е8-4.

Учитывая, что намагниченность масла линейно зависит от концентрации дисперсных частиц, количественную оценку устойчивости полученных коллоидов проводили по относительному изменению намагниченности в поле центробежных сил.

Из результатов испытаний, представленных в табл. 1 вытекает, что относительное уменьшение намагниченности Jот из-за необратимых седиментационных процессов, что напрямую связано с потерей коллоидной устойчивости магнитного масла, хорошо коррелирует с величиной диэлектрической проницаемости жидкости-носителя.

Максимальная коллоидная устойчивость достигается для жидкости-носителя с диэлектрической проницаемостью εr=4,4-5,1. Снижение намагниченности происходит в результате агрегирования частиц их седиментационного перераспределения.

Коэффициент корреляции Пирсона между величиной, характеризующей устойчивость магнитных масел Jот и параметром Е составляет 0,93. Значит, можно утверждать о существовании тенденции к повышению коллоидной стабильности магнитных масел по мере уменьшения параметра Е.

Пример 2

Пример осуществляли аналогично приведенному выше примеру, но варьировали ПАВ, при этом в качестве жидкости-носителя магнитного масла использовали диоктилсебацинат.

В таблице 2 приведены данные опытов, свидетельствующие о повышении коллоидной устойчивости по мере снижения величины параметра Е (коэффициент корреляции Пирсона для этого случая 0,95).

где Vот - объем отделившейся дисперсионной среды, *МСДА - алкидная производная олеиновой кислоты. **Альфонокс - олигоэфир на основе этилена с фосфорсодержащей полярной группой.

Из приведенных результатов видно, что максимальной коллоидной устойчивостью, минимальной потерей намагниченности обладают сочетания жидкости-носителя и ПАВ с критериальным параметром, предложенным в формуле изобретения, в частности диоктилсебацинат и ОЭ-3, диоктилсебацинат и жирная кислота.

В настоящее время способ получения магнитного масла находится на стадии опытно-лабораторных испытаний.

Способ получения магнитных масел, включающий обработку магнетита поверхностно-активным веществом с последующим добавлением к ним жидкости-носителя, нагревание полученной смеси до температуры 150°С, выдерживание в течение 10 ч и дальнейшее охлаждение до комнатной температуры, отличающийся тем, что поверхностно-активное вещество и жидкость-носитель выбирают из следующего условия Е=|εpr|/εp, где Е - критериальный параметр, εp - диэлектрическая проницаемость поверхностно-активного вещества, εr - диэлектрическая проницаемость жидкости-носителя, при этом критериальный параметр Е равен от 0 до 0,2.



 

Похожие патенты:

Изобретение относится к области нанокомпозитных материалов на основе электроактивных полимеров с системой сопряжения и магнитных наночастиц Fe3O4, закрепленных на углеродных нанотрубках.

Изобретение относится к области металлургии. Для повышения магнитных свойств стального листа в продольном и поперечном направлениях прокатки лист с ориентированной зеренной структурой выполняют из стали, содержащей химический состав, мас.%: С от 0,0003 до 0,005, Si от 2,9 до 4,0, Mn от 2,0 до 4,0, раств.

Изобретение относится к области металлургии, а именно к технологии производства магнитных сплавов системы железо-алюминий-никель-кобальт, применяемых для получения постоянных магнитов электродвигателей и навигацинных устройств.

Изобретение относится к области металлургии. Для исключения образования дефектов в стеклянной покровной пленке устройство для лазерной обработки листа содержит лазерный осциллятор, испускающий лазерный луч, причем лазерный луч, фокусируемый на лист электротехнической стали с ориентированной зеренной структурой, представляет собой линейно-поляризованный свет и сканируется в направлении сканирования, и угол между направлением линейной поляризации и направлением сканирования составляет более 45° и равен или не более 90°.

Изобретение относится к области металлургии. Раскрывается текстурированная листовая электротехническая сталь, которая демонстрирует улучшение значений билдинг-фактора (БФ) без повреждения покрытия, придающего натяжение.

Изобретение относится к получению поликристаллических ферритов-гранатов. Способ включает синтез ферритового материала, приготовление пресс-порошка, прессование заготовок, радиационно-термическое спекание заготовок путем их нагрева до температуры спекания 1350-1450°С облучением проникающим пучком быстрых электронов с выдержкой при температуре спекания в течение 30-90 минут под непрерывным электронным пучком.

Настоящее изобретение относится к магнитно-мягкому порошку и способу нанесения покрытия на магнитно-мягкий порошок. Порошок содержит по меньшей мере одну из следующих фторсодержащих композиций: а) фторсодержащую композицию формулы , где а находится в диапазоне от 0.015 до 0.52, b находится в диапазоне от 0.015 до 0.52, М1 представляет собой Н, K, Rb, Cs или NR14, где каждый R1 независимо выбран из группы, состоящей из Н, C1-6 алкила, фенила и бензила; или b) фторсодержащую композицию формулы , где с находится в диапазоне от 0.005 до 0.17, d находится в диапазоне от 0.015 до 0.52, М2 представляет собой В или Al; или с) фторсодержащую композицию формулы , где e находится в диапазоне от 0.003 до 0.10, f находится в диапазоне от 0.015 до 0.52.

Изобретение относится к области металлургии, а именно к способам улучшения магнитных свойств, и может быть использовано в электронике и приборостроении. Способ изготовления изделий из магнитно-мягкого сплава 27КХ включает интенсивную пластическую деформацию исходного магнитно-мягкого сплава с последующим получением заготовки заданной формы и отжиг полученной заготовки в интервале температур 730-850°С в течение 1-3 часов.

Изобретение относится к области коллоидной химии и может быть использовано для получения магнитных жидкостей на полиметилсилоксановой основе, применяемых в магнитожидкостных герметизирующих устройствах.

Изобретение относится к электротехнике. Технический результат состоит в упрощении монтажа ротора, в частности, посредством посадки с натягом, причем должна быть придана достаточная устойчивость.

Изобретение относится к способу снижения скорости вызываемого поверхностным током разрушения компонентов гидравлической системы, подвергаемых воздействию гидравлической жидкости на основе эфиров фосфорной кислоты.

Настоящее изобретение относится к смазочной композиции, содержащей по меньшей мере 90 мас.% базового масла и жидкую композицию антиоксиданта, содержащую следующие компоненты, приведенные в массовых % от смазочной композиции: (1) твердый алкилированный фенил-альфа-нафтиламин в количестве 0,01-1,0 мас.%, (2) алкилированное дифениламиновое производное триазола, толутриазола или бензотриазола в количестве 0,01-0,5 мас.%, и (3) метиленбис(ди-н-бутилдитиокарбамат) в количестве 0,01-1,0 мас.%, обладающей улучшенной антиоксидантной защитой.

Изобретение относится к смазочной композиции, содержащей в качестве базового смазочного масла полиалкиленгликоль, пригодный для использования в качестве смазочного материала в промышленном масле, смазке или технологическом масле, и добавку в количестве 0,25-2,0 вес.% всей смазочной композиции, содержащую (1) С8-алкилированный фенил-α-нафтиламин и (2) смесь димеров и тримеров 2,2,4-триметил-1,2-дигидрохинолина.

Изобретение относится к рабочим (гидравлическим) жидкостям и может быть использовано в областях техники, требующих применения в гидросистемах рабочих жидкостей с большим диапазоном рабочих температур и обладающих повышенной пожаробезопасностью, в частности, в авиационной технике.

Изобретение относится к применению несиликоновой противопенной присадки для уменьшения испаряемости по NOACK смазочной композиции, а также к самой смазочной композиции для использования в картере двигателя внутреннего сгорания, содержащей: (i) базовое масло; (ii) несиликоновую противопенную присадку; и (iii) одну или несколько рабочих присадок, причем указанная несиликоновая противопенная присадка представляет собой алкилполиакрилат, присутствующий на уровне от 10 ч./млн до 500 ч./млн от массы композиции.

Настоящее изобретение относится к композициям присадок и промышленным техническим жидкостям для использования в металлообработке, обработке металлов давлением, ковке и в горном деле.

Настоящее изобретение относится к смазывающим композициям, содержащим особенно тяжелое базовое масло полученное с использованием синтеза Фишера-Тропша и алкилированное ароматическое смешанное сырье, в которой особенно тяжелое базовое масло ФТ имеет кинематическую вязкость при 100°С в диапазоне от 19 до 35 мм2/с.

Изобретение относится к смазочным композициям для поршневых двигателей, в частности к всесезонным смазочным композициям для авиационных поршневых двигателей, и направлено на улучшение эксплуатационных характеристик смазочной композиции требуемой вязкости при использовании ее для смазки тяжелонагруженных деталей авиационных поршневых двигателей.

Настоящее изобретение относится к области энергетики, в частности производству трансформаторного масла, используемого в маслонаполненном электрооборудовании, в частности, к способу замедления окисления трансформаторного масла.

Изобретение относится к маслам для двигателей внутреннего сгорания. Заявлено моторное масло для двухтактных бензиновых двигателей, содержащее пакет присадок, загуститель полиизобутилен и базовое масло, которое отличается тем, что базовым маслом является изопарафиновое масло с вязкостью до 2,6 мм2/с при 100°С, выделенное из продуктов гидроизомеризации остатка однопроходного гидрокрекинга вакуумного дистиллата, при следующем соотношении компонентов, мас.%: пакет присадок до 4,6 загуститель полиизобутилен 25-30 базовое изопарафиновое масло с вязкостью до 2,6 мм2/с при 100°С до 100 Моторное масло дополнительно содержит растворитель в количестве до 10 мас.%.
Изобретение относится к области неорганической химии и касается способа получения наночастиц магнетита (Fe3O4), эпитаксиально выращенных на наночастицах золота, которые могут быть использованы в магнитно-резонансной томографии в качестве контрастного агента, в магнитной сепарации, магнитной гипертермии, адресной доставке лекарств при помощи внешнего магнитного поля.
Наверх