Сверхпроводящий накопитель энергии

Изобретение относится к теплотехнике, а точнее к сверхпроводящим накопителям энергии, и может быть использовано для запуска вихревых термоядерных реакторов. Особенностью предложенного сверхпроводящего накопителя энергии является то, что корпус и сверхпроводящий электрод выполнены в виде тороидальной спирали, внутренняя поверхность корпуса и сверхпроводящего электрода покрыты капиллярной структурой, корпус частично заполнен легкоиспаряющейся жидкостью с температурой кипения ниже точки фазового перехода материала сверхпроводящего электрода, а капиллярная структура, расположенная на внутренней поверхности корпуса, и капиллярная структура на сверхпроводящем электроде соединены между собой капиллярными перемычками. К другим особенностям можно отнести то, что герметичный корпус снабжен клапаном, а внешняя система охлаждения выполнена в виде негерметичного сосуда Дъюара с внутренней поверхностью, покрытой капиллярной структурой. 2 з.п. ф-лы, 8 ил.

 

Изобретение относится к теплотехнике, а точнее к сверхпроводящим накопителям энергии и может быть использован для запуска вихревых термоядерных реакторов.

Известна тепловая труба, содержащая корпус с зонами испарения и конденсации и высоковольтные электроды, подключенные к высоковольтному источнику энергии (SU641262, МПК F28D15/00, опубл. 05.01.1979). Однако такая тепловая труба не предназначена для аккумулирования энергии, она наоборот использует энергию от высоковольтного источника энергии.

Известна тепловая труба (SU1000728, МПК F28D15/00, опубл. 28.02.1983), содержащая корпус с зонами испарения и конденсации и сверхпроводящие электроды, разделенные диэлектрической прокладкой.

Однако запас электрической энергии в такой тепловой трубе незначителен и она не может создавать с внешней стороны корпуса вращающееся магнитное поле.

В качестве прототипа выбрана электрогидродинамическая тепловая труба (SU 1726960 A1, МПК F28D15/02, опубл. 15.04.1992), содержащая герметичный тороидальный корпус в виде полого тора, кольцевой сверхпроводящий электрод, расположенный внутри корпуса и внешнюю систему охлаждения. Однако такая тепловая труба, имеющая сверхпроводящий электрод и постоянно циркулирующий по нему ток со своей внешней стороны не может создавать ни постоянное, ни тем более вращающееся магнитное поле. Сверхпроводящий электрод в такой тепловой трубе выполнен в виде простого тора, а не в виде тороидальной спирали, что ограничивает ее использование в качестве сверхпроводящего накопителя энергии.

Задачей настоящего изобретения является создание сверхпроводящего накопителя энергии, который способен создавать с внешней стороны вращающееся магнитное поле.

Поставленная задача решается тем, что в предложенном сверхпроводящем накопителе энергии, содержащем герметичный полый трубчатый корпус, частично заполненный легкоиспаряющейся жидкостью с температурой кипения ниже точки фазового перехода материала сверхпроводящего кольцевого трубчатого электрода, расположенного на внутренней поверхности корпуса и диэлектрическую капиллярную структуру на сверхпроводящем кольцевом электроде, которые соединены между собой капиллярными диэлектрическими перемычками и внешнюю систему охлаждения, корпус снабжен высоковольтным вводом, соединенным с мощным внешним источником электрической энергии, при этом трубчатый корпус и расположенный в нем сверхпроводящий трубчатый электрод выполнены в виде тороидальной спирали.

Сверхпроводящий накопитель энергии может содержать герметичный корпус снабженный клапаном.

Внешняя система охлаждения сверхпроводящего накопителя энергии может быть выполнена в виде негерметичного сосуда Дьюара с внутренней поверхностью, покрытой капиллярной структурой.

На фиг. 1 условно изображен корпус и электрод в виде простого тора.

На фиг. 2-6 условно изображены разнообразные виды корпуса 1 и сверхпроводящих электродов 2.

На фиг. 7 изображен сверхпроводящий накопитель энергии, содержащий герметичный корпус в виде полого тора 1, сверхпроводящий кольцевой трубчатый электрод 2, расположенный внутри корпуса 1 и внешняя система охлаждения 3.

На фиг. 8 изображено поперечное сечение сверхпроводящего накопителя энергии на фиг 7 в районе капиллярных диэлектрических перемычек 7.

На фиг. 9 изображен сверхпроводящий накопитель энергии с высоковольтным вводом 11 и мощным источником энергии 12.

Особенностью предложенного накопителя энергии является то, что корпус 1 и сверхпроводящий кольцевой трубчатый электрод 2 выполнены в виде тороидальной спирали 4, внутренняя поверхность корпуса 1 и сверхпроводящего трубчатого элекрода 2 покрыты капиллярной структурой 5, корпус частично заполнен легкоиспаряющейся жидкостью 6 с температурой кипения ниже точки фазового перехода материала сверхпроводящего электрода 2, а капиллярная структура, расположенная на внутренней поверхности корпуса и капиллярная структура 5 на сверхпроводящем электроде 2 соединены между собой капиллярными перемычками 7.

Другими отличительными признаками можно признать то, что герметичный корпус снабжен клапаном 8, а внешняя система охлаждения 3 выполнена в виде негерметичного сосуда Дъюара 9 с внутренней поверхностью, покрытой капиллярной структурой 10. 11 - высоковольтный ввод на корпусе 1. На корпусе 1 размещен мощный внешний источник электрической энергии 12, например, электрогенератор атомной энергетической установки.

Работает предлагаемый сверхпроводящий накопитель энергии следующим образом.

Основное энерговыделение в таком сверхпроводящем накопителе энергии т происходит при протекании больших токов через сверхпроводящий электрод 2, выполненный в виде тороидальной спирали 4. Поэтому вся поверхность сверхпроводящего электрода должна быть покрыта диэлектрической капиллярной структурой и эта структура должна быть запитана легкоиспаряющейся жидкостью 6 с температурой кипения ниже точки фазового перехода материала сверхпроводящего электрода 4. Это можно достичь только в случае, когда расположенная на внутренней поверхности корпуса 1, диэлектрическая капиллярная структура 5 на сверхпроводящем электроде 2, выполненном в виде тороидальной спирали 4 соединены между собой капиллярными диэлектрическими перемычками 7. Окончательный отвод тепла от корпуса 1 осуществляется за счет того, что внешняя система охлаждения 3 выполнена в виде негерметичного сосуда Дъюара 9 с внутренней поверхностью, покрытой капиллярной структурой 10. Капиллярная структура 10 может быть выполнена из металла. Если криогенная жидкость во внешней системе охлаждения 3 полностью испарится, в корпусе 1 начнет повышаться давление. Во избежание разрушения корпуса 1 герметичный корпус снабжен клапаном 8. Наличие капиллярной структуры 10 в сосуде Дъюара 9 обеспечивает равномерное снятие тепла с части корпуса 1.

1. Сверхпроводящий накопитель энергии, содержащий герметичный полый трубчатый корпус, частично заполненный легкоиспаряющейся жидкостью с температурой кипения ниже точки фазового перехода материала сверхпроводящего кольцевого трубчатого электрода, расположенного на внутренней поверхности корпуса, и диэлектрическую капиллярную структуру на сверхпроводящем кольцевом электроде, которые соединены между собой капиллярными диэлектрическими перемычками, и внешнюю систему охлаждения, отличающийся тем, что корпус снабжен высоковольтным вводом, соединенным с мощным внешним источником электрической энергии, при этом трубчатый корпус и расположенный в нем сверхпроводящий трубчатый электрод выполнены в виде тороидальной спирали.

2. Сверхпроводящий накопитель энергии по п. 1, отличающийся тем, что герметичный корпус снабжен клапаном.

3. Сверхпроводящий накопитель энергии по п. 1, отличающийся тем, что внешняя система охлаждения выполнена в виде негерметичного сосуда Дьюара с внутренней поверхностью, покрытой капиллярной структурой.



 

Похожие патенты:

Изобретение относится к области теплотехники и может быть применено для тепловых труб криогенных и средних температур и может быть использовано при разработке разнообразных систем охлаждения, в том числе при разработке систем охлаждения космических аппаратов, работающих в условиях пониженной гравитации и невесомости.

Изобретение относится к двухфазным теплопередающим устройствам, работающим по замкнутому испарительно-конденсационному циклу, в которых циркуляция рабочего тела осуществляется под действием капиллярных сил.

Устройство и способ для заполнения тепловой трубы с двойным технологическим интерфейсом твердой рабочей средой. Устройство для заполнения содержит перчаточный ящик (7), резервуар (4) для рабочей среды, верхнюю крышку (8), источник (31) инертного газа, вакуумную молекулярную насосную установку, нагреватель и охладитель.

Изобретение относится к области теплоэнергетики и может быть использовано в специальных целях для создания мощных магнитных полей и создания приборов, регистрирующих внешние магнитные поля.

Изобретение относится к теплотехнике и может быть использовано для передачи тепловой энергии по вертикальным каналам в системах теплоэнергетики. Термосифон содержит корпус, рабочий объем нижней камеры которого заполнен жидкостью, воронку, перегораживающую с зазором нижнюю камеру с паропроводом для транспортировки пара, верхнюю камеру, клапан для сбрасывания воздуха наружу, причем в верхнюю камеру введен корпус конденсатора, заполненный до заданного уровня жидкостью и соединенный с паропроводом, подключенным к сифону, конец которого размещен в жидкости конденсатора.

Изобретение относится к устройству рекуперации отводимого отработанного тепла с комбинированной выработкой тепла и электроэнергии (СНР) при пиковой электрической нагрузке и к способу его работы.

Изобретения относятся к средствам для охлаждения грунта, работающим по принципу гравитационных тепловых труб и парожидкостных термосифонов, и предназначены для использования при строительстве сооружений в зоне вечной мерзлоты.

Изобретение относится к области теплотехники и может быть использовано для передачи большого количества тепла при малых перепадах (градиентах) температуры на большие расстояния.

Изобретение относится к теплотехнике, а именно к двухфазным теплопередающим устройствам - контурным тепловым трубам. Устройство может быть использовано преимущественно в системах охлаждения электронных компонентов, в частности микропроцессоров, центральных процессоров, чипов, модулей памяти в компьютерах и т.д., в том числе там, где имеются два и более компонента с различной мощностью, требующих охлаждения, расположенных на удалении друг от друга и от стока тепла: воздушного, жидкостного или иного теплообменника.

Изобретение относится к системам, предназначенным для охлаждения тепловыделяющих элементов серверных стоек, и может также использоваться в других электронных устройствах, построенных по принципу стойки, и охлаждать любые требующие охлаждения элементы.

Изобретение относится к области испарительно-конденсационных устройств и может быть использовано в области криогенных и средних температур при исследовании особенностей эффекта Лейденфроста. Особенность предлагаемой тепловой трубы состоит в том, что внутри корпуса зоны конденсации установлен конденсатосборник, конденсатопровод соединен с конденсатосборником и снабжен дозатором и расположен с внешней стороны корпуса зоны конденсации, а в зоне испарения конденсатопровод установлен тангенциально относительно лунки и снабжен конусной вставкой. 1 з.п. ф-лы, 4 ил.
Наверх