Способ гидроочистки углеводородного сырья

Изобретение относится к области гидроочистки нефтяных фракций. Описан способ гидрообработки, который ведут путем контактирования сырья с системой катализаторов, на первой ступени с катализатором при содержании компонентов, мас.%: оксид кобальта - 3,5-6,0; оксид молибдена 14,0-20,0; оксид фосфора 0,5-0,8; оксид алюминия - до 100; на второй ступени - продуктов первой ступени с катализатором при содержании компонентов, мас. %: оксид никеля 4,0-6,0; оксид вольфрама 16,0-21,0; оксид фосфора 0,4-0,6; оксид алюминия - до 100. Углеводородное сырье первой ступени представляет собой смесь прямогонной дизельной фракции (ПДФ) с легким газойлем каталитического крекинга (ЛГКК) в объемном соотношении ПДФ : ЛГКК от 30:70 до 5:95. На первой ступени температура составляет 340-400°C, на второй ступени температура составляет 300-340°C, при прочих одинаковых условиях на обеих ступенях: давлении 3,0-5,0 МПа, объемной скорости подачи сырья 3,0-4,0 ч-1, кратности циркуляции водородсодержащего газа 300-600 нм33 сырья. Описан способ получения указанных катализаторов. Техническим результатом является получение компонента дизельного топлива класса 5 согласно требованиям Технического регламента по содержанию серы и цетановому числу. 3 н.п. ф-лы, 2 табл., 6 пр.

 

Изобретение относится к области нефтепереработки, в частности к разработке способов гидроочистки нефтяных фракций, с использованием системы катализаторов.

В случае гидроочистки смеси прямогонных нефтяных фракций и вторичных газойлей, например, легкого газойля каталитического крекинга (ЛГКК), наряду с реакциями гидродесульфуризации большое значение имеют реакции гидрирования ароматических и олефиновых углеводородов. ЛГКК содержит 50-70% ароматических углеводородов, вследствие чего цетановое число этого продукта не превышает 32-35 п. Гидрирование ароматических углеводородов приводит к повышению цетанового числа и позволяет выпускать дизельные топлива, соответствующие требованиям Технического регламента (51 п. для топлив 5 класса). Гидрирование олефиновых углеводородов необходимо для достижения значения йодного числа (не более 5 г I2/100 г).

Однако обычно применяемые для гидроочистки дизельных фракций СоМо/Al2O3 катализаторы, имеющие высокую гидродесульфуризующую (ГДС) активность, в меньшей степени активны в гидрировании ароматических и олефиновых углеводородов. С другой стороны, NiMo/Al2O3 и NiW/Al2O3 катализаторы, обладающие высокой гидрирующей активностью, менее активны в реакциях ГДС. Поэтому при переработке такого сложного вида нефтяного сырья, как ЛГКК, целесообразно использовать двухступенчатую гидроочистку. Последовательность катализаторов: на первую ступень загружается NiW/Al2O3 катализатор, на вторую - СоМо/Al2O3 катализатор. Температура на первой ступени выше, чем на второй. Таким образом, состав катализаторов и температурный режим способствуют протеканию реакций ГДС на первой стадии, и гидрирования ненасыщенных углеводородов на второй, при этом обеспечиваются благоприятные термодинамические условия для гидрирования полициклических ароматических углеводородов, что обеспечивает максимальный прирост цетанового числа [Arribas М.А., Corma A., Diaz-Cabanas M.J., et. al. Hydrogenation and ring opening of tetralin over bifunctional catalysts based on the new ITQ-21 zeolite // Appl. Catal. A: Gen. - 2004. - V. 273. - P. 277-286].

Изобретение относится к способам гидроочистки вторичных дизельных фракций и смесей дизельных фракций и может быть использовано в нефтеперерабатывающей промышленности.

Известен способ гидроочистки нефтяных фракций при повышенных температуре и давлении и циркуляции водородсодержащего газа в две стадии в присутствии пакета алюмооксидных катализаторов, включая защитный слой, отличающийся тем, что процесс осуществляют при температуре 330-390°C, давлении 40-50 ати, циркуляции водородсодержащего газа 250-400 нм33 сырья, объемной скорости подачи сырья 0,8-1,3 ч-1 в присутствии пакета катализаторов, который включает на первой стадии катализатор защитного слоя в качестве верхнего удерживающего слоя и алюмоникельмолибденовый катализатор в качестве нижнего слоя (RU №2353644, 14.11.2007).

Недостатком данного способа является использование в качестве гидрирующего алюмоникельмолибденового катализатора. Однако известно, что гидрирующая активность алюмоникельвольфрамового катализатора является самой высокой из известных катализаторов гидроочистки [Stanislaus A., Marafi A., Rana M.S. Recent advances in the science and technology of ultra low sulfur diesel (ULSD) production // Catal. Today. - 2010. - V. 153. - P. 1-68]. Далее приведены катализаторы гидроочистки в порядке возрастания гидрирующей активности: CoW/Al2O3, СоМо/Al2O3, NiMo/Al2O3, NiW/Al2O3.

Наиболее близким к изобретению по технической сущности и достигаемому эффекту является способ гидрообработки рафинатов масляных фракций в присутствии системы катализаторов, содержащих оксиды никеля, кобальта, молибдена, вольфрама, алюминия, с последующей депарафинизацией растворителем продукта гидрообработки, отличающийся тем, что гидрообработку масляных рафинатов ведут путем контактирования сырья на первой ступени с катализатором при содержании компонентов, мас. %: оксид никеля - 3,2-5,1; оксид вольфрама - 20,0-31,5; оксид фосфора - 0,5-0,8; оксид алюминия - до 100; на второй ступени - продуктов первой ступени с катализатором при содержании компонентов, мас. %: оксид кобальта - 5,0; оксид молибдена - 19,0; оксид фосфора - 0,8; оксид алюминия - до 100 при объемном соотношении катализаторов первой и второй ступеней 1:1-1:11 и условиях работы на ступенях: температуре 300-390°C, давлении 4,0-5,0 МПа, объемной скорости подачи сырья (ОСПС) 0,5-2,0 ч-1, кратности циркуляции водородсодержащего газа (Кц) 500-1000 нм33 сырья (RU 2546829, 21.06.2013).

Недостатком данного способа является порядок расположения катализаторов: алюмоникельмолибденовый катализатор, загруженный на первой ступени, не обладает высокой ГДС активностью, поэтому продукт первой стадии необходимо подвергать гидрообработке при высокой температуре на второй стадии. Это приводит к частичному дегидрированию нафтеновых углеводородов до ароматических и к снижению цетанового числа.

Техническим результатом предлагаемого изобретения является получение компонента дизельного топлива класса 5 согласно требованиям Технического регламента (Технический регламент «О требованиях к автомобильному и авиационному бензину, дизельному и судовому топливу, топливу для реактивных двигателей и топочному мазуту». Утвержден постановлением Правительства РФ от 27 февраля 2008 г. №118) по содержанию серы и цетановому числу.

Технический результат достигается способом, согласно которому гидрообработку ведут путем контактирования сырья с системой катализаторов, на первой ступени с катализатором при содержании компонентов, мас. %: оксид кобальта - 3,5-6,0; оксид молибдена 14,0-20,0; оксид фосфора 0,5-0,8; оксид алюминия - до 100; на второй ступени - продуктов первой ступени с катализатором при содержании компонентов, мас. %: оксид никеля 4,0-6,0; оксид вольфрама 16,0-21,0; оксид фосфора 0,4-0,6; оксид алюминия - до 100; углеводородное сырье первой ступени представляет собой смесь прямогонной дизельной фракции (ПДФ) с легким газойлем каталитического крекинга (ЛГКК) в объемном соотношении ПДФ : ЛГКК от 30:70 до 5:95; на первой ступени температура составляет 340-400°C, на второй ступени температура составляет 300-340°C, при прочих одинаковых условиях на обеих ступенях: давлении 3,0-5,0 МПа, объемной скорости подачи сырья 3,0-4,0 ч-1, кратности циркуляции водородсодержащего газа 300-600 нм33 сырья.

Пример 1

Гидроочистку ведут путем контактирования сырья с системой катализаторов. На первой ступени с СоМо/Al2O3 катализатором, состав которого приведен в табл. 1; на второй ступени - продуктов первой ступени с NiW/Al2O3 катализатором, состав которого приведен в табл. 1. Углеводородное сырье представляет собой смесь ПДФ с ЛГКК в объемном соотношении ПДФ : ЛГКК=5:95.

Для приготовления NiW/Al2O3 катализатора используют 79,6 г γ-Al2O3 с удельным объемом пор 0,8 мл/г. Навеску носителя 20 мин выдерживают в вакууме. Готовят водный раствор соединений активных компонентов: 18,6 г фосфорно-вольфрамовой кислоты H3[P(WO3)12]⋅24H2O растворяют в 40 мл воды, добавляют 7,9 г никеля лимоннокислого (содержание NiO=40,54% мас.). Объем раствора доводят водой до 63,7 мл. Затем с помощью делительной воронки приливают раствор к навеске катализатора. Катализатор сушат при 80, 100 и 110°C по 2 часа. Полученный катализатор имеет состав, мас. %: 4,0 NiO; 16,0 WO3; 0,4 г P2O5; 79,6 г Al2O3.

Для приготовления СоМо/Al2O3 катализатора используют 82,0 г γ-Al2O3 с удельным объемом пор 0,8 мл/г. Навеску носителя 20 мин выдерживают в вакууме, затем с помощью делительной воронки приливают раствор соединений активных компонентов и комплексообразователя: 17,8 г фосфорно-молибденовой кислоты Н3 [Р(MoO3)12]⋅24H2O растворяют в 40 мл воды, добавляют 8,6 г кобальта лимоннокислого (содержание СоО=40,54% мас.). Объем раствора доводят водой до 65,6 мл. Катализатор сушат при 80, 100 и 110°C по 2 часа. Полученный катализатор имеет состав, мас. %: 3,5 СоО; 14,0 MoO3; 0,5 P2O5; 82,0 г Al2O3.

Катализаторы загружают в трубчатые реактора проточной установки под давлением водорода. Масса катализатора в каждом реакторе составляет 20,0 г. Проводят жидкофазное сульфидирование легким углеводородным сырьем в течение 36 часов с выдержкой при 240°C (8 часов) и 340°C (8 часов). Затем прекращают подачу сульфидирующего агента, выставляют режимные значения температуры, давления, ОСПС и Кц и подают углеводородное сырье. Результаты приведены в таблице 2.

Пример 2

Гидроочистку ведут путем контактирования сырья с системой катализаторов. На первой ступени с СоМо/Al2O3 катализатором, состав которого приведен в табл. 1; на второй ступени - продуктов первой ступени с NiW/Al2O3 катализатором, состав которого приведен в табл. 1. Углеводородное сырье представляет собой смесь ПДФ с ЛГКК в объемном соотношении ПДФ : ЛГКК = 10:90.

Для приготовления NiW/Al2O3 катализатора используют 78,1 г γ-Al2O3 с удельным объемом пор 0,8 мл/г. Навеску носителя 20 мин выдерживают в вакууме. Готовят водный раствор соединений активных компонентов: 19,8 г фосфорно-вольфрамовой кислоты H3[P(WO3)12]⋅24H2O растворяют в 40 мл воды, добавляют 11,1 г никеля лимоннокислого (содержание NiO=40,54% мас.). Объем раствора доводят водой до 62,5 мл. Затем с помощью делительной воронки приливают раствор к навеске катализатора. Катализатор сушат при 80, 100 и 110°C по 2 часа. Полученный катализатор имеет состав, мас. %: 4,5 NiO; 17,0 WO3; 0,4 г P2O5; 78,1 г Al2O3.

Для приготовления СоМо/Al2O3 катализатора используют 80,5 г γ-Al2O3 с удельным объемом пор 0,8 мл/г. Навеску носителя 20 мин выдерживают в вакууме, затем с помощью делительной воронки приливают раствор соединений активных компонентов и комплексообразователя: 19,0 г фосфорно-молибденовой кислоты Н3 [Р(MoO3)12]⋅24H2O растворяют в 40 мл воды, добавляют 9,8 г кобальта лимоннокислого (содержание СоО=40,54% мас.). Объем раствора доводят водой до 64,4 мл. Катализатор сушат при 80, 100 и 110°C по 2 часа. Полученный катализатор имеет состав, мас. %: 4,0 СоО; 15,0 MoO3; 0,5 P2O5; 80,5 г Al2O3.

Катализаторы загружают в трубчатые реактора проточной установки под давлением водорода. Масса катализатора в каждом реакторе составляет 20,0 г. Проводят жидкофазное сульфидирование легким углеводородным сырьем в течение 36 часов с выдержкой при 240°C (8 часов) и 340°C (8 часов). Затем прекращают подачу сульфидирующего агента, выставляют режимные значения температуры, давления, ОСПС и Кц и подают углеводородное сырье. Результаты приведены в таблице 2.

Пример 3

Гидроочистку ведут путем контактирования сырья с системой катализаторов. На первой ступени с СоМо/Al2O3 катализатором, состав которого приведен в табл. 1; на второй ступени - продуктов первой ступени с NiW/Al2O3 катализатором, состав которого приведен в табл. 1. Углеводородное сырье представляет собой смесь ПДФ с ЛГКК в объемном соотношении ПДФ : ЛГКК = 15:85.

Для приготовления NiW/Al2O3 катализатора используют 76,5 г γ-Al2O3 с удельным объемом пор 0,8 мл/г. Навеску носителя 20 мин выдерживают в вакууме. Готовят водный раствор соединений активных компонентов: 21,0 г фосфорно-вольфрамовой кислоты H3[P(WO3)12]⋅24H2O растворяют в 40 мл воды, добавляют 12,3 г никеля лимоннокислого (содержание NiO=40,54% мас.). Объем раствора доводят водой до 61,2 мл. Затем с помощью делительной воронки приливают раствор к навеске катализатора. Катализатор сушат при 80, 100 и 110°C по 2 часа. Полученный катализатор имеет состав, мас. %: 5,0 NiO; 18,0 WO3; 0,5 г P2O5; 76,5 г Al2O3.

Для приготовления СоМо/Al2O3 катализатора используют 78,9 г γ-Al2O3 с удельным объемом пор 0,8 мл/г. Навеску носителя 20 мин выдерживают в вакууме, затем с помощью делительной воронки приливают раствор соединений активных компонентов и комплексообразователя: 20,3 г фосфорно-молибденовой кислоты Н3 [Р(MoO3)12]⋅24H2O растворяют в 40 мл воды, добавляют 11,1 г кобальта лимоннокислого (содержание СоО=40,54% мас.). Объем раствора доводят водой до 63,1 мл. Катализатор сушат при 80, 100 и 110°C по 2 часа. Полученный катализатор имеет состав, мас. %: 4,5 СоО; 16,0 MoO3; 0,6 P2O5; 78,9 г Al2O3.

Катализаторы загружают в трубчатые реактора проточной установки под давлением водорода. Масса катализатора в каждом реакторе составляет 20,0 г. Проводят жидкофазное сульфидирование легким углеводородным сырьем в течение 36 часов с выдержкой при 240°C (8 часов) и 340°C (8 часов). Затем прекращают подачу сульфидирующего агента, выставляют режимные значения температуры, давления, ОСПС и Кц и подают углеводородное сырье. Результаты приведены в таблице 2.

Пример 4

Гидроочистку ведут путем контактирования сырья с системой катализаторов. На первой ступени с СоМо/Al2O3 катализатором, состав которого приведен в табл. 1; на второй ступени - продуктов первой ступени с NiW/Al2O3 катализатором, состав которого приведен в табл. 1. Углеводородное сырье представляет собой смесь ПДФ с ЛГКК в объемном соотношении ПДФ : ЛГКК = 20:80.

Для приготовления NiW/Al2O3 катализатора используют 75,0 г γ-Al2O3 с удельным объемом пор 0,8 мл/г. Навеску носителя 20 мин выдерживают в вакууме. Готовят водный раствор соединений активных компонентов: 22,1 г фосфорно-вольфрамовой кислоты H3[P(WO3)12]⋅24H2O растворяют в 40 мл воды, добавляют 13,6 г никеля лимоннокислого (содержание NiO=40,54% мас.). Объем раствора доводят водой до 60,0 мл. Затем с помощью делительной воронки приливают раствор к навеске катализатора. Катализатор сушат при 80, 100 и 110°C по 2 часа. Полученный катализатор имеет состав, мас. %: 5,5 NiO; 19,0 WO3; 0,5 г P2O5; 75,0 г Al2O3.

Для приготовления СоМо/Al2O3 катализатора используют 76,8 г γ-Al2O3 с удельным объемом пор 0,8 мл/г. Навеску носителя 20 мин выдерживают в вакууме, затем с помощью делительной воронки приливают раствор соединений активных компонентов и комплексообразователя: 22,2 г фосфорно-молибденовой кислоты Н3 [Р(MoO3)12]⋅24H2O растворяют в 40 мл воды, добавляют 12,3 г кобальта лимоннокислого (содержание СоО=40,54% мас.). Объем раствора доводят водой до 61,4 мл. Катализатор сушат при 80, 100 и 110°C по 2 часа. Полученный катализатор имеет состав, мас. %: 5,0 СоО; 17,5 MoO3; 0,7 P2O5; 76,8 г Al2O3.

Катализаторы загружают в трубчатые реактора проточной установки под давлением водорода. Масса катализатора в каждом реакторе составляет 20,0 г. Проводят жидкофазное сульфидирование легким углеводородным сырьем в течение 36 часов с выдержкой при 240°C (8 часов) и 340°C (8 часов). Затем прекращают подачу сульфидирующего агента, выставляют режимные значения температуры, давления, ОСПС и Кц и подают углеводородное сырье. Результаты приведены в таблице 2.

Пример 5

Гидроочистку ведут путем контактирования сырья с системой катализаторов. На первой ступени с СоМо/Al2O3 катализатором, состав которого приведен в табл. 1; на второй ступени - продуктов первой ступени с NiW/Al2O3 катализатором, состав которого приведен в табл. 1. Углеводородное сырье представляет собой смесь ПДФ с ЛГКК в объемном соотношении ПДФ : ЛГКК = 25:75.

Для приготовления NiW/Al2O3 катализатора используют 73,4 г γ-Al2O3 с удельным объемом пор 0,8 мл/г. Навеску носителя 20 мин выдерживают в вакууме. Готовят водный раствор соединений активных компонентов: 23,3 г фосфорно-вольфрамовой кислоты H3[P(WO3)12]⋅24H2O растворяют в 40 мл воды, добавляют 14,8 г никеля лимоннокислого (содержание NiO=40,54% мас.). Объем раствора доводят водой до 58,7 мл. Затем с помощью делительной воронки приливают раствор к навеске катализатора. Катализатор сушат при 80, 100 и 110°C по 2 часа. Полученный катализатор имеет состав, мас. %: 6,0 NiO; 20,0 WO3; 0,6 г P2O5; 73,4 г Al2O3.

Для приготовления СоМо/Al2O3 катализатора используют 74,8 г γ-Al2O3 с удельным объемом пор 0,8 мл/г. Навеску носителя 20 мин выдерживают в вакууме, затем с помощью делительной воронки приливают раствор соединений активных компонентов и комплексообразователя: 24,1 г фосфорно-молибденовой кислоты Н3 [Р(MoO3)12]⋅24H2O растворяют в 40 мл воды, добавляют 13,5 г кобальта лимоннокислого (содержание СоО=40,54% мас.). Объем раствора доводят водой до 59,8 мл. Катализатор сушат при 80, 100 и 110°C по 2 часа. Полученный катализатор имеет состав, мас. %: 5,5 СоО; 19,0 MoO3; 0,7 P2O5; 74,8 г Al2O3.

Катализаторы загружают в трубчатые реактора проточной установки под давлением водорода. Масса катализатора в каждом реакторе составляет 20,0 г. Проводят жидкофазное сульфидирование легким углеводородным сырьем в течение 36 часов с выдержкой при 240°C (8 часов) и 340°C (8 часов). Затем прекращают подачу сульфидирующего агента, выставляют режимные значения температуры, давления, ОСПС и Кц и подают углеводородное сырье. Результаты приведены в таблице 2.

Пример 6

Гидроочистку ведут путем контактирования сырья с системой катализаторов. На первой ступени с СоМо/Al2O3 катализатором, состав которого приведен в табл. 1; на второй ступени - продуктов первой ступени с NiW/Al2O3 катализатором, состав которого приведен в табл. 1. Углеводородное сырье представляет собой смесь ПДФ с ЛГКК в объемном соотношении ПДФ : ЛГКК = 30:70.

Для приготовления NiW/Al2O3 катализатора используют 72,4 г γ-Al2O3 с удельным объемом пор 0,8 мл/г. Навеску носителя 20 мин выдерживают в вакууме. Готовят водный раствор соединений активных компонентов: 24,5 г фосфорно-вольфрамовой кислоты H3[P(WO3)12]⋅24H2O растворяют в 40 мл воды, добавляют 14,8 г никеля лимоннокислого (содержание NiO=40,54% мас.). Объем раствора доводят водой до 57,9 мл. Затем с помощью делительной воронки приливают раствор к навеске катализатора. Катализатор сушат при 80, 100 и 110°C по 2 часа. Полученный катализатор имеет состав, мас. %: 6,0 NiO; 21,0 WO3; 0,6 г P2O5; 72,4 г Al2O3.

Для приготовления СоМо/Al2O3 катализатора используют 73,2 г γ-Al2O3 с удельным объемом пор 0,8 мл/г. Навеску носителя 20 мин выдерживают в вакууме, затем с помощью делительной воронки приливают раствор соединений активных компонентов и комплексообразователя: 25,4 г фосфорно-молибденовой кислоты Н3 [Р(MoO3)12]⋅24H2O растворяют в 40 мл воды, добавляют 14,8 г кобальта лимоннокислого (содержание СоО=40,54% мас.). Объем раствора доводят водой до 58,6 мл. Катализатор сушат при 80, 100 и 110°C по 2 часа. Полученный катализатор имеет состав, мас. %: 6,0 СоО; 20,0 MoO3; 0,8 P2O5; 73,2 г Al2O3.

Катализаторы загружают в трубчатые реактора проточной установки под давлением водорода. Масса катализатора в каждом реакторе составляет 20,0 г. Проводят жидкофазное сульфидирование легким углеводородным сырьем в течение 36 часов с выдержкой при 240°C (8 часов) и 340°C (8 часов). Затем прекращают подачу сульфидирующего агента, выставляют режимные значения температуры, давления, ОСПС и Кц и подают углеводородное сырье. Результаты приведены в таблице 2.

Способ гидроочистки смеси прямогонной дизельной фракции (ПДФ) с легким газойлем каталитического крекинга (ЛГКК) в объемном соотношении ПДФ:ЛГКК от 30:70 до 5:95 при следующих условиях процесса: на первой ступени температура составляет 340-400°С, на второй ступени температура составляет 300-340°С, при прочих одинаковых условиях на обеих ступенях: давлении 3,0-5,0 МПа, объемной скорости подачи сырья 3,0-4,0 ч-1, кратности циркуляции водородсодержащего газа 300-600 нм33 сырья в присутствии катализаторов, содержащих оксиды никеля, кобальта, молибдена, вольфрама, алюминия, отличающийся тем, что гидрообработку ведут путем контактирования сырья с системой катализаторов, на первой ступени с катализатором при содержании компонентов, мас.%: оксид кобальта - 3,5-6,0; оксид молибдена 14,0-20,0; оксид фосфора 0,5-0,8; оксид алюминия - до 100; на второй ступени - продуктов первой ступени с катализатором при содержании компонентов, мас.%: оксид никеля 4,0-6,0; оксид вольфрама 16,0-21,0; оксид фосфора 0,4-0,6; оксид алюминия - до 100.



 

Похожие патенты:
Изобретение относится к способу удаления мышьяка из углеводородного сырья, по меньшей мере частично жидкого при температуре окружающей среды и атмосферном давлении, содержащему по меньшей мере следующие этапы: a) приводят в контакт углеводородное сырье, водород и первую поглощающую массу, содержащую подложку и по меньшей мере один металл M1 группы VIB и по меньшей мере два металла M2 и M3 группы VIII, где металл M1 является молибденом, металл M2 является кобальтом и металл M3 является никелем; b) приводят в контакт углеводородное сырье, водород и вторую поглощающую массу в форме сульфида, содержащую подложку и никель, причем вторая поглощающая масса содержит количество никеля в диапазоне от 5 до 50% по массе NiO, в расчете на суммарную массу второй поглощающей массы в форме оксида перед сульфированием.

Настоящее изобретение относится к способу получения фракции газойля, фракции тяжелого дистиллята и фракции остаточного базового масла из полученного в синтезе Фишера-Тропша сырья.

Настоящее изобретение относится к способу получения фракции газойля, фракции тяжелого дистиллята и фракции остаточного базового масла из полученного в синтезе Фишера-Тропша сырья.

Изобретение относится к способу гидропереработки и установке для его осуществления. Способ включает разделение потока вакуумного газойля на легкий вакуумный газойль, средний вакуумный газойль и тяжелый вакуумный газойль в колонне вакуумной дистилляции; обеспечение зоны гидропереработки, содержащей по меньшей мере два слоя катализатора; закаливание ниже по потоку от первого слоя катализатора из указанных по меньшей мере двух слоев катализатора средним вакуумным газойлем, который легче тяжелого вакуумного газойля, подаваемого в указанный первый слой катализатора, и закаливание ниже по потоку от второго слоя катализатора из указанных по меньшей мере двух слоев катализатора легким вакуумным газойлем, причем тяжелый вакуумный газойль имеет более высокое содержание серы и азота, чем средний вакуумный газойль, который, в свою очередь, имеет более высокое содержание серы и азота, чем легкий вакуумный газойль.

Изобретение относится к способу обработки тяжелого нефтяного сырья для получения жидкого топлива и базисов жидкого топлива с низким содержанием серы, предпочтительно бункерного топлива и базисов бункерного топлива.

Изобретение относится к композиции для использования в качестве растворителя или компонента растворителя, содержащей С14-парафины в количестве от 40% до 50% от общей массы композиции и С15-парафины в количестве от 35% до 45% от общей массы композиции, причем С14-парафины и С15-парафины получены из биологического сырья.

Изобретение относится к способам совместного гидрооблагораживания триглицеридов жирных кислот и прямогонной дизельной фракции на сульфидных катализаторах с целью получения низкосернистых углеводородных фракций и может быть использовано в нефтеперерабатывающей промышленности.

Изобретение относится к способу одновременного получения по меньшей мере двух углеводородных фракций с низким содержанием серы из смеси углеводородов, начальная температура кипения которых составляет от 35 до 100°С, а конечная температура кипения составляет от 260 до 340°С, и имеющих общее содержание серы от 30 до 10000 м.д.

Настоящее изобретение относится к способу обработки бензина, содержащего диолефины, олефины и сернистые соединения, в том числе меркаптаны, в котором: подают бензин в дистилляционную колонну (3), содержащую по меньшей мере одну реакционную зону (4), содержащую по меньшей мере один первый катализатор, содержащий подложку и по меньшей мере один элемент группы VIII, причем введение осуществляют на уровне ниже реакционной зоны (4), для взаимодействия по меньшей мере одной бензиновой фракции с катализатором из реакционной зоны (4) и превращения по меньшей мере части меркаптанов из указанной фракции в сернистые соединения путем реакции с диолефинами и получения десульфированного легкого бензина, отбираемого в голове указанной дистилляционной колонны (3); где способ дополнительно включает следующие стадии: отбирают промежуточную бензиновую фракцию на уровне выше реакционной зоны (4) и ниже верха дистилляционной колонны (3); в нижней части колонны отбирают тяжелый бензин, содержащий большинство сернистых соединений, приводят в контакт, в реакторе демеркаптанизации (13), указанную промежуточную бензиновую фракцию, возможно в присутствии водорода, со вторым катализатором в сульфидной форме, содержащим подложку, по меньшей мере один элемент, выбранный из группы VIII, и по меньшей мере один элемент, выбранный из группы VIB, причем содержание элемента группы VIII, выраженное на оксид, составляет от 1 и 30 % от общей массы катализатора, содержание элемента группы VIB, выраженное на оксид, составляет от 1 до 30 % от общей массы катализатора, чтобы получить поток, содержащий сульфиды; поток, выходящий из реактора демеркаптанизации, возвращают в дистилляционную колонну (3).
Изобретение относится к способу гидроочистки углеводородного сырья, содержащего соединения азота в количестве выше 250 в.ч./млн и имеющего средневзвешенную температуру кипения выше 380°С, включающему следующие стадии, на которых a) приводят в контакт в присутствии водорода указанное углеводородное сырье с по меньшей мере одним первым катализатором, включающим аморфную подложку на основе оксида алюминия, фосфор и активную фазу, образованную из по меньшей мере одного металла группы VIB в форме оксида и по меньшей мере одного металла группы VIII в форме оксида, причем указанный первый катализатор получен способом, включающим по меньшей мере один этап обжига, b) приводят в контакт в присутствии водорода поток, полученный на стадии а), с по меньшей мере одним вторым катализатором, включающим аморфную подложку на основе оксида алюминия, фосфор, активную фазу, образованную из по меньшей мере одного металла группы VIB и по меньшей мере одного металла группы VIII, и по меньшей мере одно органическое соединение, содержащее кислород и/или азот, причем указанный второй катализатор получен способом, включающим следующие этапы: i) приводят в контакт с подложкой по меньшей мере одно соединение металла группы VIB, по меньшей мере одно соединение металла группы VIII, фосфор и по меньшей мере одно органическое соединение, содержащее кислород и/или азот, с получением предшественника катализатора, ii) высушивают указанный предшественник катализатора, полученный на этапе i), при температуре ниже 200°С, без последующего обжига, с получением гидроочищенного потока.

Изобретение относится к способу гидроочистки углеводородного сырья, заключающемуся в превращении углеводородного сырья с высоким содержанием серы и азота в присутствии катализатора, который содержит, мас.
Изобретение относится к способу удаления мышьяка из углеводородного сырья, по меньшей мере частично жидкого при температуре окружающей среды и атмосферном давлении, содержащему по меньшей мере следующие этапы: a) приводят в контакт углеводородное сырье, водород и первую поглощающую массу, содержащую подложку и по меньшей мере один металл M1 группы VIB и по меньшей мере два металла M2 и M3 группы VIII, где металл M1 является молибденом, металл M2 является кобальтом и металл M3 является никелем; b) приводят в контакт углеводородное сырье, водород и вторую поглощающую массу в форме сульфида, содержащую подложку и никель, причем вторая поглощающая масса содержит количество никеля в диапазоне от 5 до 50% по массе NiO, в расчете на суммарную массу второй поглощающей массы в форме оксида перед сульфированием.
Настоящее изобретение относится к катализатору гидродесульфирования, содержащему подложку, фосфор, по меньшей мере, один металл, выбранный из группы VIB, причем металлом группы VIB является молибден, и, по меньшей мере, один металл, выбранный из группы VIII периодической системы элементов, причем металлом группы VIII является кобальт, причем содержание металла группы VIB, выраженного в расчете на содержание оксидов, составляет от 6 до 25 вес.% от общего веса катализатора, содержание металла группы VIII, выраженное в расчете на содержание оксидов, составляет от 0,5 до 7 вес.% от общего веса катализатора, подложка содержит по меньшей мере 90 вес.% оксида алюминия, который получен из размешанного и экструдированного геля бемита, и причем плотность молибдена в катализаторе, выраженная в числе атомов молибдена на нм2 катализатора, составляет от 3 до 5, атомное соотношение Co/Mo составляет от 0,3 до 0,5, и атомное соотношение P/Mo составляет от 0,1 до 0,3, и удельная поверхность указанного катализатора составляет от 60 до 150 м2/г.

Изобретение относится к области нефтепереработки, а именно к разработке катализатора изодепарафинизации и способа получения низкозастывающих дизельных топлив зимних и арктического сортов с использованием разработанного катализатора.

Изобретение относится к катализаторам гидрокрекинга углеводородного сырья для получения низкосернистых керосиновых и дизельных фракций. Описан катализатор, который содержит одновременно молибден и вольфрам в форме биметаллических комплексных соединений [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] и Ni(NH4)a[HbW2O5(C6H5O7)2], где: L и С6Н5О7 - частично депротонированная форма лимонной кислоты; х=0 или 2; y=0 или 1; а=0, 1 или 2; b=2-а; кремний в форме аморфного алюмосиликата, алюминий в форме γ-Al2O3 и аморфного алюмосиликата, при этом компоненты в катализаторе содержатся в следующих концентрациях, мас.

Изобретение относится к способу приготовления катализатора гидроочистки нефтяных фракций путем пропитки прокаленного алюмооксидного носителя водным раствором комплексных соединений фосфатов с активными компонентами Мо и Ni или Мо и Со.

Катализатор защитного слоя для процесса гидроочистки нефтяных фракций, содержащий, масс. %: оксид молибдена - 2,5-6,0, оксид кобальта или никеля - 1,0-3,0, оксид натрия - 0,9-1,2, оксид алюминия – остальное.

Изобретение относится к носителю для катализатора гидрирования углеводородных нефтепродуктов, катализатору, содержащему указанный носитель, способам получения носителя и к способу получения катализатора.

Изобретение относится к катализаторам защитного слоя, располагаемым перед основным катализатором гидроочистки углеводородного сырья. Описан катализатор, содержащий биметаллическое комплексное соединение [Ni(H2O)2]2[Mo4O11(C6H5O7)2] с концентрацией 5,3-7,9 мас.

Изобретение относится к способу одновременного получения по меньшей мере двух углеводородных фракций с низким содержанием серы из смеси углеводородов, начальная температура кипения которых составляет от 35 до 100°С, а конечная температура кипения составляет от 260 до 340°С, и имеющих общее содержание серы от 30 до 10000 м.д.

Изобретение относится к катализаторам гидрокрекинга углеводородного сырья для получения низкосернистых керосиновых и дизельных фракций. Описан катализатор, который содержит одновременно молибден и вольфрам в форме биметаллических комплексных соединений [Ni(H2O)x(L)y]2[Mo4O11(C6H5O7)2] и Ni(NH4)a[HbW2O5(C6H5O7)2], где: L и С6Н5О7 - частично депротонированная форма лимонной кислоты; х=0 или 2; y=0 или 1; а=0, 1 или 2; b=2-а; кремний в форме аморфного алюмосиликата, алюминий в форме γ-Al2O3 и аморфного алюмосиликата, при этом компоненты в катализаторе содержатся в следующих концентрациях, мас.
Наверх