Способ получения нанокомпозита

Изобретение относится к химии, электротехнике и нанотехнологии и может быть использовано для разработки анодных материалов литий-ионных батарей нового поколения, а также чувствительных элементов газовых сенсоров. Сначала формируют массив многостенных углеродных нанотрубок (МУНТ) на подложке в реакторе, затем осаждают на них Sn термическим разложением SnCl2⋅2H2O. После этого осуществляют образование наночастиц ядро-оболочка Sn/SnOx трехкратным облучением импульсным ионным пучком наносекундной длительности. Способ прост и менее трудоёмок за счёт исключения операций предварительной подготовки и очистки исходных материалов и экологичен за счёт исключения использования вредных окислителей. 11 ил.

 

Изобретение относится к способам формирования нанокомпозитов на основе многостенных углеродных нанотрубок (МУНТ) и наночастиц олова и может быть использовано для разработки анодных материалов литий-ионных батарей нового поколения, чувствительного элемента газового сенсора.

В настоящее время существуют различные способы формирования композитов на основе углеродных нанотрубок и частиц Ме-МеОх (Me=Fe, Ni, Sn) со структурой ядро-оболочка (core-shell). Такие композиты являются перспективными материалами для гетерогенного катализа, анодных материалов литий-ионных аккумуляторов, чувствительных элементов газовых сенсоров.

Известен способ формирования композитного материала со структурой ядро-оболочка/углеродные нанотрубки (Fe-Fe2O3/УНТ) на основе функционализированных УНТ и железа (III) хлорид гексагидрата (FeCl3⋅6H2O) посредством ультразвукового диспергирования в деионизованной воде с последующим добавлением NaOH и достижения pH 11 [Chao Wu, Quanchao Zhuang, Leilei Tian, Yongli Cui, Xinxi Zhang. Facile synthesis of Fe-Fe2O3 core-shell nanoparticles attached to carbon nanotubes and their application as high performance anode in lithium-ion batteries // Materials Letters. 2013. V. 107. P. 27-30]. В дальнейшем полученная суспензия сушилась при 160°С в течение 12 часов. После охлаждения до комнатной температуры, полученный материал промывался деионизированной водой с последующим трехкратным промыванием в этаноле и высушивался при 50°С под вакуумом в течение 7 часов. Последний этап формирования композитов заключался в спекании материала при 500°С в течение 10 ч в атмосфере аргона.

К недостаткам этого способа относится необходимость использования функционализированных УНТ, многостадийность и длительность процедуры формирования композитного материала, а также применение различных химических реагентов, остатки которых могут негативно сказываться на характеристиках получаемого материала.

Наиболее близким к изобретению по технической сущности является способ изготовления композитного материала Sn/SnO2/МУНТ для анодов литий-ионных аккумуляторов посредством многостадийного процесса, который включает приготовление листа (buckypaper) из МУНТ (производства Arry Nano, Германия), термическое испарение Sn с последующим осаждением на лист из углеродных нанотрубок и окислением полученного материала в высокочастотной плазме [Mirac Alaf, Ubeyd Tocoglu, Fuat Kayis, and Hatem Akbulut. Sn/SnO2/MWCNT composite anode and electrochemical impedance spectroscopy studies for Li-ion batteries // Fullerenes, Nanotubes and Carbon Nanostructures/ 2016. VOL. 24. NO. 10. P. 630-634 (прототип)]. Перед изготовлением листа из МУНТ с использованием технологии вакуумной фильтрации проводилась очистка МУНТ от различных включений (аморфного углерода и частиц катализатора), а также их функционализация с использованием химических окислителей. На втором этапе производилось осаждение олова на лист МУНТ с использованием термического испарения высокочистого металлического олова (99,999%) в атмосфере аргона (1 Па). Затем для получения SnO2 использовали окисление в высокочастотной плазме в атмосфере Ar:О2 (1:1).

Данный метод также имеется ряд существенных недостатков. Требуется получение особо чистых, тщательно подготовленных материалов, что увеличивает трудоемкость и дороговизну метода, необходимость функционализации МУНТ, использование для этого химических окислителей, в частности кислот, ухудшающих экологичность процесса, трудоемкость и длительность процедур удаления их остатков, что, однако, не гарантирует абсолютного их удаления и, соответственно, делает возможным ухудшение характеристик формируемого композитного материала

Задачей настоящего изобретения является разработка более экономичного, экологичного и менее трудоемкого способа формирования нанокомпозита на основе МУНТ и частиц Sn/SnOx со структурой ядро (Sn) - оболочка (SnOx).

Предлагаемый способ получения нанокомпозита на основе многостенных углеродных нанотрубок и наночастиц олова со структурой ядро-оболочка включает формирование массива МУНТ и осаждение Sn на МУНТ, и отличается тем, что МУНТ получают на подложке в реакторе, Sn осаждают термическим разложением SnCl2*2H2O, а образование наночастиц Sn(ядро)/SnOx(оболочка) осуществляют путем трехкратного облучения импульсным ионным пучком наносекундной длительности.

По данному способу методом CVD (Chemical Vapor Deposition) в реакторе на подложках получен массив МУНТ, толщина выращенного слоя ~ 15±3 мкм. Затем путем гидролиза и термического разложения соединения SnCl2*2H2O с последующим осаждением паров также методом CVD получен композит SnO2-х/МУНТ с высаженными частицами кристаллического диоксида олова с характерным размером ~120 нм.

Модифицирование композита SnO2-х/МУНТ проводилось путем трехкратного облучения импульсным ионным пучком наносекундной длительности с получением наночастиц олова со структурой ядро-оболочка Sn (ядро)/SnOx (оболочка), закрепленных на поверхности углеродных нанотрубок.

Для изучения структуры и состава нанокомпозитов применялись методы просвечивающей электронной микроскопии (ПЭМ) на автоэмиссионном ПЭМ - JEM 2200FS фирмы JEOL с использованием для элементного и фазового анализа методик энергодисперсионного и дифракционного анализа, а также рентгенофотоэлектронной спектроскопии (РФЭС) на аналитическом комплексе Kratos Axis Ultra DLD.

На фиг. 1 приведена гистограмма по распределению размеров кластеров оксида олова в сформированных композитах до облучения, полученная из данных ПЭМ. Из гистограммы следует, что в композитах до облучения кластеры оксида олова имеют относительно большие размеры (~ 100-130 нм). При этом изображение ПЭМ, показанное на фиг. 2, свидетельствует о протяженных открытых участках углеродных нанотрубок, что является нежелательным. При этом данные РФЭС (фиг. 3), как и изображение ПЭМ (фиг. 4) указывают на то, что кластеры не обладают структурой ядро-оболочка и представлены оксидом олова, близким по составу к SnO2.

Значение плотности энергии ионного пучка играет важную роль для формирования нанокомпозитов, так как при ее увеличении до 1.0-1.2 Дж/см2 наблюдалось существенное снижение концентрации олова с одновременным частичным разрушением слоя МУНТ, что делает затруднительным использование композитов в качестве анодных материалов литий-ионных аккумуляторов, чувствительных элементов газовых сенсоров. При этом оптимальным режимом облучения оказался режим с плотностью энергии облучения, равной 0.5 Дж/см2, при которой не происходит существенного снижения количества олова и разрушения слоя МУНТ. Также важна роль оптимального количества импульсов ионного облучения. Данные ПЭМ для композитов, облученных одним (фиг. 5-7) и тремя (фиг. 8-10) импульсами показывают, что структуру ядро (Sn) - оболочка (SnOx) на поверхности МУНТ удалось получить только при количестве импульсов, равном трем (фиг. 9). Наличие в кластерах ядра из металлического олова (Sn) подтверждается данными РФЭС (фиг. 11). При данном количестве импульсов достигается также минимальный размер (~ 12-18 нм) (фиг. 10) и равномерное распределение кластеров Sn/SnOx (фиг. 8), в то время, как при количестве импульсов 1 размеры кластеров SnOx существенно выше (фиг. 7) и, соответственно, имеются достаточно протяженные открытые участки углеродных нанотрубок (фиг. 5).

Таким образом установлено, что облучение композита SnO2-х/МУНТ приводит к формированию достаточно равномерно диспергированных по поверхности МУНТ частиц со структурой «ядро-оболочка» с резкой межфазной границей SnOx-Sn, в которых «ядром» является металлическое олово (Sn0) с характерным размером ~ 10-15 нм, а «оболочкой» - тонкий аморфный слой (2-6 нм), состоящий из нестехиомтерических оксидов олова со средней стехиометрией SnO0.9.

Пример осуществления способа.

Массив МУНТ формируют методом CVD при пиролизе смеси ацетилонитрила и ферроцена (100:1) на подложках из монокристаллического кремния с поверхностным термическим оксидом толщиной 100 нм. Синтез МУНТ проведен в реакторе при температуре 800°С в течение 12 минут. Толщина выращенного слоя МУНТ составляет ~ 15 мкм.

Композит SnO2-х/МУНТ получен путем гидролиза и термического разложения соединения SnCl2*2H2O при температуре 380°С с последующим осаждением паров на разогретую до 240°С подложку Si/SiO2 с массивом МУНТ. Время синтеза композита составляет 15 минут. Средний размер частиц кристаллического диоксида олова ~ 120 нм.

Модифицирование композита SnO2-х/МУНТ проводится импульсным ионным пучком на ускорителе ТЕМР-4М со следующими параметрами: состав пучка Н+ - 15%, С+ - 85%, энергия 250 keV, длительность импульса 120 ns, количество импульсов - 3, плотность энергии 0.5 J/cm2. Доза имплантированных ионов составляет ~1013 ion/cm2.

Средний размер кластеров Sn/SnOx (частиц со структурой «ядро-оболочка») в полученном нанокомпозите составляет ~ 15 нм.

Данный способ по сравнению со способом по прототипу обладает рядом преимуществ. Он не требует специальной очистки МУНТ, а также их функционализации. Соответственно, не используются вредные химические окислители и не требуется трудоемкая длительная процедура очистки от их остатков, отсутствует необходимость использования особо чистых материалов. Процесс импульсного ионного облучения осуществляется в вакууме, что делает его экологически чистым.

Таким образом, предложен менее трудоемкий, экономичный и экологичный способ получения нанокомпозитов на основе многостенных углеродных нанотрубок и наночастиц олова со структурой ядро-оболочка.

Способ получения нанокомпозита на основе многостенных углеродных нанотрубок (МУНТ) и наночастиц олова со структурой ядро-оболочка, включающий формирование массива МУНТ и осаждение Sn на МУНТ, отличающийся тем, что МУНТ получают на подложке в реакторе, Sn осаждают термическим разложением SnCl2*2H2O, а образование наночастиц Sn(ядро)/SnOx(оболочка) осуществляют путем трехкратного облучения импульсным ионным пучком наносекундной длительности.



 

Похожие патенты:

Изобретение относится к композиционной частице для применения в маркировке, пригодной для идентификации/установления подлинности изделия. Частица содержит по меньшей мере одну суперпарамагнитную часть и по меньшей мере одну термолюминесцентную часть.
Изобретение может быть использовано в неорганической химии. Способ получения SnO высокой чистоты включает реакцию растворимой соли олова с C2-12дикарбоновой кислотой в водной фазе при значении pH меньше приблизительно 5 с образованием суспензии, содержащей Sn-дикарбоксилатный комплекс.

Изобретение относится к области неорганической химии, а именно к композиции для получения сенсорных покрытий на основе водных суспензий наночастиц диоксида олова.

Изобретение относится к технологии опто- и микроэлектроники и может быть использовано для получения опалоподобных структур. .

Изобретение относится к способу получения монооксида олова, применяемого как исходное вещество для создания материалов электронной техники, в стекольной промышленности, медицине и авиации в качестве теплоотражающего покрытия, антиобледенителя и газочувствительного элемента.
Изобретение относится к неорганической химии, а именно к способу получения соединений олова, в частности к способу получения порошка оксида олова (IV). .
Изобретение относится к технологии получения диоксида олова с высокой удельной поверхностью, которая может варьироваться в процессе электролиза. .

Изобретение относится к гидрометаллургии цветных металлов, а конкретно к способам переработки олово- и сурьмусодержащих продуктов с получением соединений. .
Изобретение относится к производству высокодисперсных оксидов металлов или металлоидов из галогенидов. .

Изобретение относится к способу и системе для производства метанола с использованием системы риформинга на основе кислородопроводящей мембраны. Способ включает отделение кислорода от кислородсодержащего потока в одном или нескольких содержащих катализатор реакторах на основе кислородопроводящей мембраны, где образуются кислородный пропускаемый поток и обедненный кислородом задерживаемый поток, причем катализатор содержится в трубках на стороне выпуска реакторов, риформинг объединенного потока исходных материалов, содержащего метан и водяной пар, в реакторе за счет теплового излучения, передаваемого от реактора, для получения потока подвергнутого риформингу синтез-газа, направление потока подвергнутого риформингу синтез-газа на сторону выпуска одного или нескольких реакторов, введение в реакцию части потока подвергнутого риформингу синтез-газа, вступающего в контакт со стороной выпуска реактора с кислородным пропускаемым потоком для получения нагретого потока продукта реакции и тепла, причем часть тепла представляет собой тепловое излучение, используемое на стадии риформинга в реакторе, часть тепла используется внутри реактора и часть тепла передается путем конвекции обедненному кислородом задерживаемому потоку, риформинг потока подвергнутого риформингу синтез-газа в реакторе за счет тепла, производимого в результате реакции, для получения потока конечного продукта подвергнутого риформингу синтез-газа, направление потока конечного продукта подвергнутого риформингу синтез-газа в систему синтеза и очистки метанола, синтез неочищенного метанола из объединенного потока произведенного синтез-газа и очистку неочищенного метанола до метанола, представляющего собой конечный продукт.

Изобретение относится к газохимии и касается реакторов для получения синтез-газа из природного/попутного газа в процессе автотермического риформинга. Реактор включает реакторные каналы, частично заполненные катализатором и расположенные параллельно продольной оси реактора, боковой патрубок вывода продукта.

Изобретение предназначено для медицины и может быть использовано в ЯМР-томографии, лекарственных средствах для лечения нейродегенеративных заболеваний, а также для магнитоуправляемой доставки лекарственных препаратов к больному органу.

Изобретение относится к газохимии и касается получения синтез-газа посредством переработки природного/попутного газа в процессе автотермического риформинга. Способ включает пропускание предварительно подогретой до 300-500°C газосырьевой смеси, состоящей из природного/попутного газа, пара и воздуха, через катализатор.

Изобретение относится к области водоочистки и водоподготовки и может быть использовано для очистки питьевых, технических и сточных вод для хозяйственно-питьевого, промышленного и сельскохозяйственного водоснабжения на фильтрующих установках, использующих совместно процессы озонирования и сорбции.

Изобретение относится к генератору озона и может быть использовано для дезинфекции воды или для отбеливания древесины, целлюлозы или пульпы для производства бумаги.

Изобретение относится к способу управления процессом получения синтез-газа для малотоннажного производства метанола. Способ осуществляют путем парциального окисления углеводородных газов при давлении 6,0-7,5 МПа в газогенераторе, оборудованном узлами ввода углеводородных газов и окислителя, в состав которых входят расходомеры-регуляторы массовых расходов углеводородного газа и окислителя.
Изобретение может быть использовано при изготовлении наноструктурированных композиционных материалов. Одностенные, двустенные или многостенные углеродные нанотрубки смешивают с органическим растворителем в высокооборотной мешалке при скорости 1000-4000 об/мин и постоянном охлаждении.

Изобретение относится к области химической промышленности, а именно к совместному производству аммиака и метанола из углеводородного сырья. Способ включает риформинг природного газа, утилизацию тепла риформинга, конверсию оксида углерода, очистку конвертированного газа от диоксида углерода, синтез метанола, метанирование и синтез аммиака.
Изобретение может быть использовано при изготовлении суперконденсаторов, сенсорных материалов, адсорбентов, носителей для катализаторов. Готовят смесь, содержащую 50-100 масс.

Изобретение предназначено для медицины и может быть использовано в ЯМР-томографии, лекарственных средствах для лечения нейродегенеративных заболеваний, а также для магнитоуправляемой доставки лекарственных препаратов к больному органу.
Наверх