Способ измерения тепловой постоянной времени термодатчика

Изобретение относится к области тепловых измерений, в частности к измерению показателя постоянной термической инерции (тепловой постоянной времени) датчиков температуры. Предложен способ измерения тепловой постоянной времени термодатчика, заключающийся в размещении последнего в среде с постоянным коэффициентом теплопередачи, регистрации и графическом построении изменяющейся во времени температуры охлаждения термодатчика. По построенному графику изменения зарегистрированной температуры термодатчика во времени определяют начальную температуру термодатчика Т0=T0(t0) для произвольно выбранного времени начала отсчета t0 в пределах интервала регистрации. Рассчитывают ожидаемую температуру термодатчика T(tОж) на момент времени tОж=t0+τ по формуле а затем осуществляют переходы от значения величины Т0 к значению величины Т(tОж) и далее от значения величины T(tОж) к значению величины tОж, при которой зарегистрировано значение величины Т(tОж). Вычисляют значение величины тепловой постоянной времени по формуле: τ=tОж-t0. Таким образом, для построения графика изменения зарегистрированной температуры термодатчика во времени может быть применено любое известное устройство, используемое для поверки или калибровки термодатчиков и способное зарегистрировать изменение температуры термодатчика во времени. Технический результат - упрощение процесса определения показателя тепловой инерции термодатчика и обеспечение высокой точности полученного результата. 1 ил.

 

Изобретение относится к области тепловых измерений, в частности к измерению показателя постоянной термической инерции (тепловой постоянной времени) датчиков температуры.

Известны способы определения показателя тепловой инерции термодатчика, основанные на нагревании термодатчика, измерении выходного сигнала, определении зависимости выходного сигнала от времени и последующем вычислении искомой величины.

Примером этому может считаться способ определения показателя тепловой инерции термопреобразователя сопротивления, заключающийся в перегреве термопреобразователя на заданную величину, с последующим снятием с выхода мостовой схемы напряжения разбаланса моста, которое подается на вход интегратора, а временной интервал, необходимый для его обнуления (на основании закона сохранения заряда), можно считать равным показателю тепловой инерции термопреобразователя (SU №1377625, G01k 15/00).

Данный способ, как и все другие аналогичные способы, обладает трудоемкостью, сложностью необходимых вычислений, повышенной погрешностью получаемого результата, обусловленной, в том числе, сложной специальной аппаратной реализацией.

Наиболее близким к предлагаемому способу измерения тепловой постоянной времени термодатчика является известный способ автоматического измерения тепловой постоянной времени термодатчика, основанный на использовании аналитической зависимости, описывающей процесс простого нагрева (или охлаждения) тела, вносимого в среду с постоянной температурой, вида

где Т0=T0(t0) - начальная температура термодатчика;

t0 - время начала отсчета;

θ=const - температура окружающей среды;

Т=T(t) - текущая температура термодатчика;

t - текущее время;

- темп охлаждения термодатчика - величина, обратная тепловой постоянной времени термодатчика;

τ - тепловая постоянная времени термодатчика.

По указанному способу напряжение на выходе преобразователя после внесения термодатчика в заданную среду в одном канале измерительной установки усиливают и подают на клеммы вертикальной развертки луча электронного осциллографа, а в другом канале - дифференцируют, усиливают и подают на клеммы горизонтальной развертки и по величине тангенса угла наклона прямолинейного участка кривой, полученной на фотографии, вычисляют значение тепловой постоянной (SU №384028, G01k 15/00).

Известный способ обладает повышенной погрешностью получаемых результатов измерения и сложностью практической реализации, т.к. требует специального аппаратного оснащения.

Задача, на решение которой направлено предлагаемое изобретение, - упрощение процесса определения показателя тепловой инерции термодатчика и обеспечение высокой точности полученного результата.

Поставленная задача достигается тем, что в предлагаемом способе измерения тепловой постоянной времени термодатчика, заключающемся в размещении последнего в среде с постоянным коэффициентом теплопередачи, регистрации и графическом построении изменяющейся во времени температуры охлаждения термодатчика, по построенному графику изменения зарегистрированной температуры термодатчика во времени определяют начальную температуру термодатчика Т0=T0(t0) для произвольно выбранного времени начала отсчета t0 в пределах интервала регистрации, рассчитывают ожидаемую температуру термодатчика Т(tОж) на момент времени tОж=t0+τ по формуле

а затем осуществляют переходы от значения величины Т0 к значению величины T(tОж) и далее от значения величины T(tОж) к значению величины tОж, при которой зарегистрировано значение величины T(tОж), и вычисляют значение величины тепловой постоянной времени по формуле:

Техническим результатом является то, что тепловую постоянную времени термодатчика определяют по формуле (3) с использованием графика изменяющейся во времени температуры охлаждения термодатчика в среде с постоянным коэффициентом теплопередачи, для построения которого может быть применено любое известное устройство, используемое для поверки или калибровки термодатчиков и способное зарегистрировать изменение температуры термодатчика во времени, что значительно упрощает процесс и обеспечивает высокую точность полученного результата.

На чертеже представлен график экспериментальной регистрации изменяющейся температуры охлаждения термодатчика в среде с постоянной температурой.

Имея результат (график) экспериментальной регистрации изменяющейся во времени температуры охлаждения термодатчика в среде с постоянной температурой, осуществляют переход «А» от значения величины Т0 для произвольно выбранного времени начала отсчета t0 в пределах интервала регистрации к значению величины T(tОж) на момент tОж=t0+τ, рассчитанной по формуле , полученной на основании использования аналитической зависимости (1), описывающей процесс простого нагрева (или охлаждения) тела, вносимого в среду с постоянной температурой θ.

Далее осуществляют переходы «Б» и «В» от значения величины T(tОж) к значению величины tОж, при которой зарегистрировано значение величины Т(tОж), и вычисляют значение величины тепловой постоянной времени τ по формуле (3).

Преимущество предложенного способа заключается в том, что он позволяет значительно упростить процесс определения показателя тепловой инерции термодатчика при обеспечении высокой точности полученного результата и не требует специального аппаратного оснащения.

Способ измерения тепловой постоянной времени термодатчика, заключающийся в размещении последнего в среде с постоянным коэффициентом теплопередачи, регистрации и графическом построении изменяющейся во времени температуры охлаждения термодатчика, отличающийся тем, что по построенному графику изменения зарегистрированной температуры термодатчика во времени определяют начальную температуру термодатчика Т0=T0(t0) для произвольно выбранного времени начала отсчета t0 в пределах интервала регистрации, рассчитывают ожидаемую температуру термодатчика T(tОж) на момент времени tОж=t0+τ по формуле , а затем осуществляют переходы от значения величины Т0 к значению величины T(tОж) и далее от значения величины T(tОж) к значению величины tОж, при которой зарегистрировано значение величины T(tОж), и вычисляют значение величины тепловой постоянной времени по формуле τ=tОж-t0.



 

Похожие патенты:

Способ поверки группы измерительных приборов на производственном объекте по наблюдениям за технологическим процессом относится к области измерительной техники и предназначен для поверки и калибровки измерительных приборов, установленных на объектах трубопроводного транспорта.

Изобретение относится к области инфракрасной (ИК) термографии и радиометрическим способам измерения температуры и может быть использовано при визуализации и определении температурных полей на поверхности объектов с помощью тепловизионной техники и при пирометрических измерениях температуры.

Изобретение относится к области термометрии и может быть использовано для измерения температуры технологической среды. Предложен термочувствительный элемент (10), содержащий зависимый от температуры измерительный элемент (МЕ), который может контактировать через по меньшей мере одну первую соединительную линию (1) и по меньшей мере одну вторую соединительную линию (2), причем первая соединительная линия (1) содержит первый и второй участки (Т1, Т2), состоящие из различных материалов.

Изобретение относится к области термометрии и может быть использовано в процессе скважинных измерений. Предложены способы и устройство для распределенного измерения температуры вдоль оптического волновода, размещенного в осевом направлении по отношению к трубопроводу, с использованием распределенного датчика температуры и набора датчиков температуры.

Изобретение относится к измерительной технике и предназначено для использования в океанографии. Заявлен способ измерения температуры и показателей термической инерции оболочек контактного датчика температуры.

Изобретение относится к измерительной технике, в частности к температурным измерениям, и может быть использовано, например, при градуировке термометров сопротивления, в том числе термопреобразователей сопротивления: металлических и полупроводниковых терморезисторов (терморезисторы, термосопротивления): термисторы, позисторы.

Изобретение относится к способам определения температуры нагретой поверхности летательного аппарата (ЛА) и может быть использовано при исследованиях в области аэродинамики, баллистики и т.д.

Группа изобретений относится к контролю элементов систем управления. Устройство контроля работоспособности беспроводного датчика содержит блок опроса, блок памяти, блок анализа и блок контроля.

Группа изобретений относится к контролю элементов систем управления. Устройство контроля работоспособности датчика содержит блок приема, блок памяти, блок анализа и блок контроля.

Изобретение относится к области термометрии и может быть использовано для контроля технологических параметров в производственных процессах. Передатчик (12) температуры процесса выполнен по меньшей мере с одним датчиком (32) температуры, имеющим множество проводов.

Изобретение относится к измерительной технике и может быть использовано при калибровке и поверке прецизионных малогабаритных и миниатюрных термопреобразователей сопротивления, а также для обеспечения достоверности высокоточных измерений температуры в объектах малого объема за счет возможности контроля их стабильности перед выполнением высокоточных измерений и экспериментальных исследованиях в различных областях науки и техники в диапазоне от 0 до 250°C. Заявлена ампула воспроизведения реперных температурных точек плавления металлов, выполненная из металлического стакана, термометрического вещества, содержащая термометровый карман, обеспечивающий минимальный воздушный зазор между корпусом термометра и внутренними стенками термометрового кармана. На внутреннюю поверхность металлического стакана нанесено тонким слоем фторопластовое покрытие толщиной не более 80 мкм, а термометровый карман выполнен из латуни с высоким коэффициентом теплопроводности, превышающим теплопроводность фторопласта. Причем ампула дополнительно содержит металлический фиксатор, прокладку и гайку с резьбовыми отверстиями для регулировочных винтов, а также включает в себя силиконовую прокладку с центральным отверстием для предотвращения конвекции в термометровом кармане и силиконовую прокладку для фиксации термометрового кармана. Градуировку малогабаритного термопреобразователеля выполняют методом реализации фазового перехода чистых металлов в процессе воспроизведения кривых плавления Ga, In и Sn в малогабаритных ампулах, нагреваемых в портативном калибраторе температуры. При этом осуществляется непрерывное измерение и регистрация выходного сигнала термопреобразователя, подключенного к прецизионному микропроцессорному измерителю температуры. Процесс плавления отражают в виде кривой плавления на дисплее. При этом процедуру градуировки выполняют так, что измерение и запись выходного сигнала термопреобразователя продолжается в течение всего времени, в течение которого реализуется полная кривая плавления с четко выраженными участками, соответствующими началу нагрева, и следующими за ним горизонтальным участком, соответствующим плавлению металла, и участком, соответствующим окончанию плавления. Технический результат - снижение трудоемкости процедуры градуировки малогабаритных и миниатюрных термопреобразователей, предназначенных для прецизионных измерений температуры объектов малого объема, и повышение точности индивидуальной градуировки термометров для измерения температуры объектов малого объема за счет применения для градуировки метода кривых плавления чистых металлов. 2 н. и 5 з.п. ф-лы, 1 ил.
Наверх