Автономное интегрированное устройство регистрации параметров авиационного газотурбинного двигателя

Изобретение относится к газотурбинному двигателестроению и может быть использовано в бортовых системах регистрации параметров авиационного газотурбинного двигателя. Автономное интегрированное устройство регистрации параметров авиационного газотурбинного двигателя включает связанные друг с другом датчики и сигнализаторы двигательных параметров, блок мониторинга параметров двигателя и электронный регулятор двигателя. Блок мониторинга параметров двигателя соединен с бортовыми системами индикации и регистрации. Устройство дополнительно содержит блок регистрации параметров, включающий связанные друг с другом энергонезависимый накопитель полетной информации, устройство ввода-вывода, вычислитель и модуль беспроводной связи. Блок регистрации параметров соединен с электронными и электрическим устройствами, обеспечивающими работу двигателя, с наземным пультом контроля двигателя и с ПЭВМ лаборатории наземного контроля двигателя. Блок регистрации параметров и функциональные устройства размещены на корпусе двигателя. При этом выход блока регистрации параметров содержит выходные сигналы в виде последовательных биполярных кодов. Предлагаемое изобретение позволяет повысить надежность и эффективность контроля работы газотурбинного двигателя, сократить временя поиска неисправностей, повысить эффективность технического обслуживания газотурбинного двигателя. 7 з.п. ф-лы, 1 ил.

 

Изобретение относится к газотурбинному двигателестроению и может быть использовано в бортовых системах регистрации параметров авиационного газотурбинного двигателя.

Известны бортовые системы обработки и регистрации полетной информации, содержащие блок сбора полетной информации от соответствующих датчиков и сигнализаторов, контроллер, защищенный и эксплуатационный бортовые накопители информации (Патент RU №2289102, МПК G01D 9/00, опубл. 10.12.2006; патент RU №2173835, МПК G01D 9/00, опубл. 20.09.2001).

Недостатками этих систем и им подобных бортовых устройств регистрации типа ЗБН-ГА, ТБН-К является: низкая частота опроса двигательных параметров (~1…2 Гц), что не позволяет с необходимым быстродействием регистрировать быстропеременные процессы в авиационном двигателе (помпаж, срыв, аварийные поломки за 0,1…1 с) для достоверного и оперативного выяснения причин их возникновения; недостаточный объем регистрируемой параметрической информации по двигателю. Как правило, это параметры, характеризующие тягу двигателя или наличие отдельных предельных состояний, например, частоты вращения роторов двигателя, температура газов за турбиной, параметры маслосистемы и др.

Известна бортовая информационно-измерительная система многодвигательной силовой установки летательного аппарата, содержащая блоки контроля датчиков двигательных параметров, вычислитель, блоки преобразования напряжения и частоты в код, операционные блоки, таймер, эксплуатационный накопитель (Патент RU №2280775, МПК F02C 9/28, опубл. 27.07.2006).

Недостатком этой системы является низкий уровень алгоритмического анализа полетной информации, а именно отсутствует идентификация событий, носящих многокритериальный характер, не осуществляется расчет выработанного ресурса двигателя, отсутствует диагностика событий при выходе множества параметров двигателя за границы предельных значений с выдачей экипажу необходимых рекомендаций.

Известна бортовая система контроля параметров авиадвигателя с ограничением температуры, топливных параметров и давления (Патент RU №2250382, МПК F02C 9/28, опубл. 20.04.2005), содержащая блок измерения основных двигательных параметров с мультиплексным выходом, вычислитель, содержащий процессор, модуль алгоритмов, модуль уставок, при этом выход процессора соединен с комплексным индикатором в кабине экипажа, а выход вычислителя соединен с защищенным бортовым накопителем информации и с табло аварийных сигналов.

Устройство реализовано в бортовой системе контроля и диагностики авиационного турбореактивного двигателя ПС-90А, применяемого на пассажирских самолетах типа Ту-204, Ту-214 и Ил-96. Блок измерения основных двигательных параметров с мультиплексным выходом (блок типа БППД-2) размещен непосредственно на двигателе, а вычислитель (типа ЦВМ-80) устанавливается в техническом отсеке самолета на специальных амортизированных стеллажах. При этом для повышения количества контролируемых параметров цифровой выход электронного регулятора двигателя типа РЭД-90 через канал информационного обмена по ГОСТ 18977 и РТМ 1495 с изменением 3 (ARINC-429) соединяется с цифровым входом вычислителя бортовой системе контроля («Авиационный двигатель ПС-90А». Иноземцев А.А., Коняев Е.А., и др. М., издательство «Либра - К», 2007 г., стр. 236-247).

Недостатком системы является: понижение функциональной работоспособности из-за невозможности регистрации и контроля множества параметров двигателя, в том числе параметров маслосистемы, в случае отказа бортового оборудования - вычислителя системы диагностики (блока типа ЦВМ) или неисправности самолетной электропроводки (электрических линий связи); остается низкой частота опроса параметров в блоке измерения основных двигательных параметров с мультиплексным выходом, всего 4 Гц, что снижает эффективность контроля и поиск неисправностей, проявляющихся с частотой 15…50 Гц; низкая автономность системы.

Наиболее близким к предлагаемому техническому решению является беспроводная система мониторинга двигателей с возможностью многосторонних возможностей воздушных судов и обработка данных двигателя на борту (Заявка US №2014114549, МПК G01M 15/14, опубл. 24.04.2014), которая выбрана за прототип и содержит связанные друг с другом датчики и сигнализаторы двигательных параметров, блок мониторинга параметров двигателя и электронный регулятор двигателя, при этом блок мониторинга параметров двигателя соединен с бортовыми системами индикации и регистрации, причем автономное интегрированное устройство дополнительно содержит блок регистрации параметров, включающий связанные друг с другом энергонезависимый накопитель полетной информации, устройство ввода-вывода, вычислитель и модуль беспроводной связи, при этом блок регистрации параметров соединен с электронным и электрическим устройствами, обеспечивающими работу двигателя, с наземным пультом контроля двигателя и с ПЭВМ лаборатории наземного контроля двигателя, при этом блок регистрации параметров и функциональные устройства размещены на корпусе двигателя.

Недостатком системы, выбранной за прототип, является недостаточный уровень контролепригодности электрического и электронного оборудования и недостаточное количество контролируемых параметров.

Кроме того, для перспективных типов авиационных двигателей пятого и шестого поколений в связи с их сложностью и наличием распределенных систем управления/мониторинга для оперативного выявления причин неисправности возникает потребность в повышении объема и скорости контроля, регистрации параметров всего электронного и электрического двигательного оборудования.

Технической задачей предлагаемого изобретения является повышение надежности и эффективности контроля, снижение времени поиска неисправностей, повышение уровня контролепригодности электрического и электронного оборудования и обеспечение автономности контроля авиационного газотурбинного двигателя двигателя, приводящие к повышению эффективности эксплуатации авиационного газотурбинного двигателя и сокращению эксплуатационных расходов на его техническое обслуживание.

Техническая задача решается за счет того, что в автономном интегрированном устройстве регистрации параметров авиационного газотурбинного двигателя, включающее связанные друг с другом датчики и сигнализаторы двигательных параметров, блок мониторинга параметров двигателя и электронный регулятор двигателя, при этом блок мониторинга параметров двигателя соединен с бортовыми системами индикации и регистрации, причем автономное интегрированное устройство дополнительно содержит блок регистрации параметров, включающий связанные друг с другом энергонезависимый накопитель полетной информации, устройство ввода-вывода, вычислитель и модуль беспроводной связи, при этом блок регистрации параметров соединен с электронным и электрическим устройствами, обеспечивающими работу двигателя, с наземным пультом контроля двигателя и с ПЭВМ лаборатории наземного контроля двигателя, при этом блок регистрации параметров и функциональные устройства размещены на корпусе двигателя, согласно изобретению, выход блока регистрации параметров содержит выходные сигналы в виде последовательных биполярных кодов.

Кроме того, согласно изобретению, скорость передачи выходных сигналов не ниже 100 кбит/с.

Кроме того, согласно изобретению, частота регистрации параметров в блоке регистрации параметров не менее 50 Гц.

Кроме того, согласно изобретению, энергонезависимый накопитель полетной информации регистрирует данные в режиме кольцевой записи.

Кроме того, согласно изобретению, передача параметров осуществляется на пульт контроля двигателя и/или в ПЭВМ через беспроводную связь, выполненную в виде Wi-fi сети.

Кроме того, согласно изобретению, информация из блока регистрации параметров передается на удаленный сервер.

Кроме того, согласно изобретению, электронное и/или электрическое устройство выполнено в виде электронного регулятора двигателя, блока питания и коммутации сильноточных агрегатов двигателя, блока управления реверсивным устройством, агрегата зажигания камеры сгорания двигателя, электромеханизмов и электроагрегатов системы запуска двигателя.

В предлагаемом изобретении, в отличие от прототипа, выход блока регистрации параметров содержит выходные сигналы в виде последовательного, биполярного кода, что обеспечивает повышение надежности и эффективности и автономности контроля двигателя, снижение времени поиска неисправностей, повышение уровня контролепригодности электрического и электронного оборудования двигателя и эффективности эксплуатации двигателя и сокращение эксплуатационных расходов на его техническое обслуживание.

В предлагаемом изобретении, в отличие от прототипа, скорость передачи выходных сигналов не ниже 100 кбит/с, частота регистрации параметров в блоке регистрации параметров не менее 50 Гц, энергонезависимый накопитель полетной информации регитрирует данные в режиме кольцевой записи, передача параметров осуществляется на пульт контроля двигателя и/или в ПЭВМ через беспроводную связь, выполненную в виде Wi-fi сети, информация из блока регистрации параметров передается на удаленный сервер, электронное и/или электрическое устройство выполнено в виде электронного регулятора двигателя, блока питания и коммутации сильноточных агрегатов двигателя, блока управления реверсивным устройством, агрегата зажигания камеры сгорания двигателя, электромеханизмов и электроагрегатов системы запуска двигателя, что обеспечивает автономность контроля двигателя, приводящие к повышению эффективности эксплуатации двигателя и сокращению эксплуатационных расходов на его техническое обслуживание.

На фиг. 1 представлена блок-схема автономного интегрированного устройства регистрации параметров авиационного газотурбинного двигателя.

Блок 1 - блок мониторинга параметров двигателя. Представляет собой специализированный многопроцессорный вычислительный блок, работающий в реальном масштабе времени, оснащенный устройствами сопряжения (ввода-вывода информации):

- с датчиками и сигнализаторами 7 параметров двигателя;

- с блоком 2, электронным регулятором двигателя;

- с блоком 4, блоком регистрации параметров двигателя;

- самолетными бортовыми системами регистрации и индикации.

В блоке мониторинга 1 параметров осуществляется прием и обработка принятой информации по заданным алгоритмам с выдачей результатов обработки и текущих значений параметров, сигналов в бортовые системы регистрации и индикации, а также в блоки 2, 4 в виде последовательных, биполярных кодов по ГОСТ 18977 и РТМ 1495 с изменением 3 (ARINC-429).

Прием параметров двигателя в блоке мониторинга осуществляется с помощью соответствующих датчиков (термопар, терморезисторов, синус-косинусных трансформаторов, датчиков магнитоэлектрического типа, пьезодатчиков и т.д.) и сигнализаторов.

К основным измеряемым параметрам блока 1 относятся: частоты вращения роторов, вибрации, параметры топливной и масляной систем.

Согласно изобретения выход блока 1 соединен с первым входом (1вх) блока 4.

Блок 2 - электронный регулятор двигателя из состава системы автоматического управления и топливопитания двигателя. Представляет собой специализированный многопроцессорный электронный вычислительный комплекс, работающий в реальном масштабе времени, оснащенный устройствами сопряжения с датчиками, сигнализаторами и исполнительными механизмами САУ 8, с электронными и электрическими устройствами двигателя, с системами 9 самолета: многоканальная система регистрации параметров, система управления общесамолетным оборудованием, бортовое радиоэлектронное оборудование, комплексная система управления.

Блок 2 обеспечивает формирование управляющих сигналов для дозирования топлива в камеру сгорания двигателя и управления узлами двигателя на всех режимах его работы в соответствии с заданными законами и программами регулирования. Блок 2 взаимодействует с отдельным комплектом датчиков и сигнализаторов, принцип действия которых аналогичен датчикам блока 1.

К основным измеряемым параметрам блока 2 следует отнести: положение рычага управлением двигателя, температура и давление воздуха на входе в двигатель, частоты вращения роторов, давление воздуха за компрессором высокого давления, температура газов за турбиной, положение дозирующей иглы, положение штоков гидроцилиндров управления механизацией, положение замка реверса и т.д., т.е. датчики, которые обеспечивают управление тягой двигателя.

Блок 2 также обеспечивает прием входной информации и передачу выходной информации в виде последовательного, биполярного кода по ГОСТ 18977 и РТМ 1495 с изменением 3 (ARINC-429).

Согласно изобретения выход блока 2 соединен со вторым входом (2вх) блока 4.

Блоки 3а, 3б, 3в, 3г - множество электронных и электрических устройств, обеспечивающих работу газотурбинного двигателя и размещенных на его корпусе.

Блок 3а - блок управления из состава локальной системы управления реверсивным устройством двигателя (электронный регулятор двигателя). Блок 3а предназначен для формирования команд на перекладку реверсивного устройства из положения «Прямая тяга» в положение «Обратная тяга» двигателя и обратно; управление электродвигателями реверсивного устройства и передачу информации о состоянии и работе реверсивного устройства в виде цифрового кода в блок 2 и в блок 4. Блок 3а представляет собой набор электронных компонентов, помещенных в герметичный корпус, который размещен на двигателе. Формирование команд в блоке 3а на перекладку реверсивного устройства осуществляется на основе управляющих сигналов из блока 2.

Согласно изобретения выход блока 3а соединен с третьим входом (3вх) блока 4.

Блок 3б - блок питания и коммутации сильноточных цепей. Представляет собой выпрямительно-преобразовательное устройство, которое предназначено для электропитания системы автоуправления двигателя, в т.ч. блока 2, напряжением постоянного тока +28 В, а также для коммутации электрических цепей исполнительных механизмов и др.

Согласно изобретения выход блока 3б соединен через электрическую цепь постоянного тока с четвертым входом (4вх) блока 4.

Блок 3в - агрегат зажигания камеры сгорания двигателя. Предназначен для непосредственного воспламенения топливо-воздушной смеси в камере сгорания авиационного газотурбинного двигателя или в пусковых воспламенителях ГТД. Блок 3в функционально обеспечивает бесперебойное искрообразование в полупроводниковых свечах поверхностного разряда за счет генерации импульсов напряжения от 0 до 13 В с различной частотой и длительность.

Согласно изобретения выход блока 3в соединен через электрическую цепь постоянного тока с пятым входом (5вх) блока 4.

Блок 3г - электромеханизм с вентильным электродвигателем, установленный на заслонке воздушного стартера для запуска двигателя. Выход блока 3г соединен с шестым входом (6вх) блока 4.

В общем случае количество электронных и электрических агрегатов, подлежащих контролю может быть увеличено, например, за счет применения автономного генератора переменного тока, электростартера-генератора авиационного газотурбинного двигателя и т.д.

Блок 4 - блок регистрации параметров двигателя. Блок 4 устанавливается на корпус газотурбинного двигателя (на фиг. 1 не показан). Предназначен для регистрации параметров двигателя и системы топливопитания от электронного регулятора 2 двигателя, блока мониторинга 1, электронных и электрических устройств 3а, 3б, 3в, 3г, обеспечивающих работу газотурбинного двигателя. В блоке 4 также регистрируется информации о параметрах полета самолета и других сопутствующих параметров самолетных систем, необходимых для анализа работы двигателя. Регистрация выполняется в полном объеме и с частотой, необходимой для анализа быстротекущих процессов.

В блоке 4 в процессе приема информации одновременно с регистрацией параметров двигателя осуществляется вычисление диагностических параметров, характеризующих работу двигателя и системы автоуправления, наработок двигателя, наработка элементов системы автоуправления, которые также фиксируются (регистрируются). Примером диагностических параметров могут быть сигналы типа «Механизация компрессора неисправна», «Высокая температура», разница между заданным (расчетным) и фактическим значением двигательного параметра, работа двигателя на режиме ограничения, слова отказов и т.д.

Выходной сигнал блока 4 представляет собой последовательный, биполярный код, согласно ГОСТ 18977 и РТМ 1495 с изменением 3 (ARINC-429), который поступает по беспроводному каналу связи (мобильной радиосвязи):

- в блок 5 - наземный пульт контроля двигателя. Согласно изобретения в качестве беспроводного канала связи блока 4 с блоком 5 применяется Wi-fi сеть. Дополнительно передача информации из блока 4 в блок 5 осуществляется по проводному каналу связи Ethernet;

- в блок 6 - ПЭВМ лаборатории наземного контроля. Согласно изобретения в качестве беспроводного канала связи блока 4 с блоком 6 применяется Wi-fi сеть;

- в телефонные сотовые сети по каналу связи типа GSM / GPRS / EDGE для передачи информации через удаленный сервер 10 на предприятия разработчика, изготовителя и эксплуатанта авиационного газотурбинного двигателя по прилету самолета и/или в полете.

Блок 4 также обеспечивает автоматическое формирование и передачу протоколов экспресс-обработки зарегистрированной информации по беспроводным каналам связи с заключением о исправности или неисправности двигателя. Протокол экспресс-обработки представляет собой хронометраж зарегистрированных параметров и событий, включая слова отказов.

Для реализации вышеуказанных функций блок 4 содержит вычислитель, устройство ввода-вывода информации, в т.ч. модуль беспроводной связи, энергонезависимый накопитель полетной информации, плату электрического питания, таймер (в составе блока 4 без позиций на фиг. 1).

Наличие энергонезависимого накопителя полетной информации обеспечивает сохранение зарегистрированной полетной информации при сбоях или отсутствии электрического питания блока 4. Плата электрического питания с модулем конденсаторов обеспечивает работоспособность блока 4 при стандартизованных перерывах в электропитании.

Блок 5 - наземный пульт контроля двигателя, может быть исполнен переносным. Предназначен для визуальной индикации оператору параметров двигателя и его систем.

Блок 6 - ПЭВМ лаборатории наземного контроля авиационно-технической базы, где осуществляется автоматизированной послеполетный контроль параметров двигателя.

Предлагаемое устройство регистрации параметров авиационного газотурбинного двигателя работает следующим образом.

В процессе работы авиационного газотурбинного двигателя на стационарных и динамических режимах в реальном масштабе времени, непрерывно из блоков 1, 2 осуществляется выдача информационных сигналов на вход блока 4 регистрации параметров двигателя.

Одновременно с выходов семейства 3 электронных и электрических агрегатов 3а, 3б, 3в, 3г двигателя на вход блока 4 также поступают информационные и электрические сигналы (0…32 В) о работе этих агрегатов.

Таким образом в блоке 4, в его встроенном накопителе регистрируется полная информация о работе двигателя и его систем, необходимая для оперативного выяснения причин дефектов, исследования нештатных ситуаций.

По окончании полета и выключении двигателя информация из блока 4 передается в пульт контроля двигателя или ПЭВМ эксплуатирующей организации после их подключения вручную и/или блок 4 обеспечивает автоматическую передачу протоколов экспресс-обработки по беспроводным каналам связи с заключением о исправности или неисправности двигателя.

Размещение блока регистрации параметров двигателя непосредственно на корпусе двигателя (на фиг. 1 не показан) обеспечивает заявляемой системе свойство автономности, т.е. ее функциональную работоспособность независимо от состояния бортового цифрового оборудования и электропроводки самолета и наличия наземных средств обработки.

Интегрированность устройства обеспечивается тем, что блок регистрации параметров двигателя взаимодействует, т.е. обеспечивает сбор данных со всех имеющихся электронных и электрических устройств двигателя. В качестве электронных и электрических устройств двигателя могут применяться - электронный регулятор двигателя, электронный блок мониторинга, блок питания и коммутации сильноточных агрегатов двигателя, блок управления реверсивным устройством, агрегат зажигания камеры сгорания двигателя, иные электромеханизмы и электроагрегаты, в любых необходимых сочетаниях.

Устройство заявляемой конструкции успешно прошло апробацию и обеспечило проведение различных типов стендовых и летных испытаний авиационного газотурбинного двигателя, предназначенного для среднемагистрального самолета. Была подтверждена эффективность и полезность автономной системы регистрации, работоспособность блока регистрации параметров двигателя. При этом была обеспечена регистрация более 3000 аналоговых и цифровых сигналов о работе авиационного двигателя и его систем. Также было подтверждено, что время поиска и локализации имитационного отказа по двигателю составило не более 5 мин.

В ходе натурных испытаний и математического моделирования была выявлена необходимость реализации следующих параметров и требований:

- объем встроенного накопителя блока 4 должен обеспечивать регистрацию данных в течение не менее 150 часов полета (кругосветный полет) в режиме кольцевой записи;

- для оперативного выяснения причин возникновения быстропеременных процессов в авиационном двигателе (помпаж, срыв, аварийные поломки за 0,1…1 с) частота регистрации параметров двигателя должна быть не менее 50 Гц;

- скорость передачи информации не ниже 100 кбит/с.

Таким образом, выполнение предлагаемого изобретения с вышеуказанными отличительными признаками, в совокупности с известными признаками, позволяет повысить надежность, эффективность и автономность контроля авиационного газотурбинного двигателя, снизить время поиска неисправностей, повысить уровень контролепригодности электрического и электронного оборудования и эффективность эксплуатации авиационного газотурбинного двигателя и сократить эксплуатационные расходы на его техническое обслуживание.

1. Автономное интегрированное устройство регистрации параметров авиационного газотурбинного двигателя, включающее связанные друг с другом датчики и сигнализаторы двигательных параметров, блок мониторинга параметров двигателя и электронный регулятор двигателя, при этом блок мониторинга параметров двигателя соединен с бортовыми системами индикации и регистрации, причем автономное интегрированное устройство дополнительно содержит блок регистрации параметров, включающий связанные друг с другом энергонезависимый накопитель полетной информации, устройство ввода-вывода, вычислитель и модуль беспроводной связи, при этом блок регистрации параметров соединен с электронным и электрическим устройствами, обеспечивающими работу двигателя, с наземным пультом контроля двигателя и с ПЭВМ лаборатории наземного контроля двигателя, при этом блок регистрации параметров и функциональные устройства размещены на корпусе двигателя, отличающееся тем, что выход блока регистрации параметров содержит выходные сигналы в виде последовательных биполярных кодов.

2. Устройство по п. 1, отличающееся тем, что скорость передачи выходных сигналов не ниже 100 кбит/с.

3. Устройство по п. 1, отличающееся тем, что частота регистрации параметров в блоке регистрации параметров не менее 50 Гц.

4. Устройство по п. 1, отличающееся тем, что энергонезависимый накопитель полетной информации регистрирует данные в режиме кольцевой записи.

5. Устройство по п. 1, отличающееся тем, что передача параметров осуществляется на пульт контроля двигателя и/или в ПЭВМ через беспроводную связь.

6. Устройство по п. 5, отличающееся тем, что беспроводная связь выполнена в виде Wi-fi сети.

7. Устройство по п. 1, отличающееся тем, что информация из блока регистрации параметров передается на удаленный сервер.

8. Устройство по п. 1, отличающееся тем, что электронное и/или электрическое устройство выполнено в виде электронного регулятора двигателя, блока питания и коммутации сильноточных агрегатов двигателя, блока управления реверсивным устройством, агрегата зажигания камеры сгорания двигателя, электромеханизмов и электроагрегатов системы запуска двигателя.



 

Похожие патенты:

Изобретение относится к способам технической диагностики дефектов подшипников качения газотурбинного двигателя при испытаниях и в эксплуатации и может найти применение в двигателестроении для выявления наличия дефекта недостаточной смазки подшипника качения.

Изобретение относится к устройствам для обкатки и испытания двигателей внутреннего сгорания. Техническим результатом является обеспечение тормозного момента применительно к современным дизельным ДВС при мощности электромашины привода-тормоза, необходимой (30…40 кВт) только для привода ДВС при холодной обкатке, упрощение устройства стенда.

Изобретение относится к области двигателестроения, а именно к способам испытания авиационных газотурбинных двигателей (ГТД). Предварительно для данного типа двигателей проводят испытания с измерением остаточного объема масла в опорах двигателя после останова при нескольких значениях времени выбега роторов за счет различного отбора мощности от роторов двигателя, строят зависимости остаточного объема масла в опорах от времени выбега Q=f(τ) и величины отбора мощности от времени выбега N=f(τ), определяют время выбега и потребную величину отбора мощности от роторов двигателя при допустимом значении остаточного объема масла в опорах двигателя, а при проведении испытаний и в ходе эксплуатации двигателя осуществляют выбранный отбор мощности от роторов двигателя.

Изобретение относится к области технической диагностики в процессе эксплуатации двигателя внутреннего сгорания по расходу топлива на холостом ходу и уровню механических потерь.

Изобретение относится к двигателям внутреннего сгорания, в частности к управлению объемом впрыска топлива согласно объему всасываемого воздуха. Технический результат заключается в снижении пропуска зажигания до перехода в отказоустойчивый режим.

Изобретение относится к области турбомашиностроения, а именно к способам испытаний газотурбинных двигателей. Способ испытаний газотурбинного двигателя включает испытания при отказе системы управления при превышении максимально допустимой температуры газа перед турбиной.

Изобретение относится к области авиадвигателестроения, а именно к способам испытаний авиационных газотурбинных двигателей (ГТД). В способе испытаний ГТД предварительно проводят испытания репрезентативного количества двигателей от трех до пяти на выбранном режиме работы двигателя, измеряют температуру газа перед турбиной и за турбиной при различном положении угла установки направляющих аппаратов компрессора высокого давления, определяют величину изменения температуры газа перед турбиной и за турбиной при изменении положения угла установки направляющих аппаратов компрессора высокого давления, затем при приемо-сдаточных испытаниях двигателя на выбранном режиме работы измеряют температуру газа перед и за турбиной, и при несоответствии измеренных температур заданным значениям изменяют угол установки направляющих аппаратов компрессора высокого давления до достижения заданных значений температуры газа перед турбиной и за турбиной.

Изобретение относится к техническому обслуживанию автотранспортных машин, в частности к устройствам для определения экологической безопасности технического обслуживания автомобилей, тракторов, комбайнов и других самоходных машин.

Изобретение относится к измерительной технике и может быть использовано для диагностики электромагнитных механизмов с подвижным якорем, в магнитную цепь которых встроен постоянный магнит.

Изобретение относится к стендам для проведения термодинамических исследований эффективности работы тепловых насосов. Испаритель, компрессор, конденсатор, регулирующий вентиль, теплообменник-охладитель хладагента, установленный между конденсатором и регулирующим вентилем расположены последовательно.

Группа изобретений относится к области управления работой газотурбинных двигателей и может быть использована для управления подачей топлива в газотурбинный двигатель и направляющими аппаратами компрессора.

Группа изобретений относится к области авиационного двигателестроения. В способе управления газотурбинным двигателем с форсажной камерой сгорания на переходных режимах работы газотурбинного двигателя заданное значение отношения давлений в заданных сечениях двигателя формируют в зависимости от приведенной частоты вращения ротора компрессора низкого давления и корректируют в зависимости от ускорения ротора компрессора высокого давления, а на установившихся режимах работы газотурбинного двигателя заданное значение отношения давлений в заданных сечениях двигателя формируют в зависимости от температуры воздуха на входе в двигатель.

Турбоэжекторный двигатель, состоящий из входного устройства, компрессора, основной камеры сгорания, одноступенчатой турбины, газового эжектора, канал высокого давления которого с одной стороны соединен с компрессором через основную камеру сгорания, а с другой стороны - с турбиной через камеру смешения, канал низкого давления с одной стороны соединен с атмосферой через входное устройство, а с другой стороны - с турбиной через камеру смешения, смесительного теплообменника, расположенного перед компрессором, форсажной камеры сгорания, выходного устройства.

Способ эксплуатации газовой турбины ниже порога ее номинальной выходной мощности, при котором определяют нижнее значение порога мощности газовой турбины в качестве мощностного параметра, ниже которого дальнейшее понижение отдаваемой газовой турбиной выходной мощности приводит к выходу газовой турбин за пределы диапазона частичных нагрузок в соответствии с нормой выброса окиси углерода.

Изобретение относится к способу эксплуатации газотурбинного двигателя. Способ включает этапы регулирования подачи жидкого топлива к горелке с высокой выходной мощностью для обеспечения высокой выходной мощности при наличии предельной температуры на входе в турбину и регулирования подачи жидкого топлива к горелке с низкой выходной мощностью для обеспечения низкой выходной мощности при наличии предельного давления в жидкотопливном коллекторе.

Изобретение относится к энергетике. Система для постепенного окисления топлива включает в себя окислительный реактор, который имеет реакционную камеру с входным отверстием и выходным отверстием.

Группа изобретений относится к способу эксплуатации газотурбинной установки, газотурбинной установке и носителю данных. В способе предусмотрены этап определения, по меньшей мере, одного эксплуатационного параметра газотурбинной установки и этап определения предельной величины мощности в зависимости от, по меньшей мере, одного определенного эксплуатационного параметра, причем, по меньшей мере, один эксплуатационный параметр газотурбинной установки включает в себя давление окружающей среды и увеличение предельной величины мощности происходит при повышении давления окружающей среды.

Изобретение относится к системам регулирования, оптимизирующим параметры турбореактивного двигателя (ТРД) в зависимости от целей полета самолета. При осуществлении способа предварительно для данного типа двигателей со штатной программой регулирования проводят его испытания на максимальном и полном форсированном режиме с замером тяги, затем для каждого из режимов перенастраивают регулятор на понижение частот вращения роторов и температуры газа за турбиной до достижения заданного снижения тяги и фиксируют значения регулятора, затем по текущим значениям формируют дополнительную программу регулирования частот вращения роторов и температуры газов за турбиной и вносят ее в регулятор двигателя, а при эксплуатации самолета в учебных целях по сигналу с борта самолета в соответствии с выбранным режимом задействуют дополнительную программу регулирования частот вращения роторов и температуры газов за турбиной.

Настоящее изобретение относится к области контроля тяги газотурбинного двигателя, в частности турбореактивного двигателя для приведения в движение летательного аппарата.

Изобретение относится к электронным системам контроля и диагностики авиационного газотурбинного двигателя, осуществляющим регистрацию информации о его параметрах и проводящим анализ его технического состояния.

Изобретение относится к области автоматического регулирования газотурбинного двигателя (ГТД), а именно к способам управления режимами работы форсажной камеры сгорания с адаптивной системой подачи топлива. Техническим результатом изобретения является повышение эффективности управления рабочим процессом камеры сгорания за счет измерения величины полного давления газового потока на выходе из форсажной камеры сгорания и управления положением топливного коллектора перед стабилизатором пламени. Способ управления форсажной камерой сгорания, при котором дополнительно измеряют величину полного давления газового потока на выходе из форсажной камеры сгорания и управляют положением топливного коллектора в форсажной камере сгорания. 3 ил.
Наверх