Пульсационный аппарат с двухступенчатой пульсационной трубой и дополнительной секцией сопел

Изобретение относится к аппаратам для проведения массообменных процессов в гетерогенных системах жидкость - твердые частицы и жидкость - жидкость (например, растворение, дегидратация, эмульгирование, экстрагирование), в особенности для процессов, в которых твердые частицы склонны к образованию больших труднорастворимых кусков, а после растворения твердой фазы продолжается процесс взаимодействия между тяжелым концентрированным раствором и не прореагировавшей легкой жидкостью, либо при суспендировании полидисперсной смеси частиц, образующих плотный осадок, в том числе гелеобразный, и может быть использовано в химической, нефтехимической, фармацевтической, пищевой, биотехнологической и других отраслях промышленности. Пульсационный аппарат содержит вертикальный корпус с размещенной в нем пульсационной трубой с образованием зазора с днищем, к верхнему концу которой посредством пульсопровода присоединен источник пневматических пульсаций, газонаполненные упругие элементы в пульсационной трубе и кольцевой камере. Пульсационная труба выполнена ступенчатой с переходом от трубы большего диаметра в верхней части к трубе меньшего диаметра в нижней части. В кольцевом зазоре между трубами большего и меньшего диаметра на нижней плоскости трубы большего диаметра герметично установлено кольцо с соплами, распложенными равномерно по окружности кольца, направленными вниз с чередующимися углами к вертикали, 5-10° и 25-60°. На боковой поверхности трубы большего диаметра установлена кольцевая обечайка с соплами, направленными вверх и вниз с углом к вертикали 25-60°. К кольцевой обечайке присоединена трубка с запорным клапаном, подключенным к верхней части пульсопровода. На боковой поверхности трубы меньшего диаметра установлены сопла, направленные вверх с углом к вертикали 25-60°. Технический результат: повышение эффективности работы аппарата и улучшение условий перемешивания. 4 з.п. ф-лы, 10 ил., 8 пр.

 

Изобретение относится к аппаратам для проведения массообменных процессов в гетерогенных системах жидкость - твердые частицы и жидкость - жидкость (например, растворение, дегидратация, эмульгирование, экстрагирование), в особенности для процессов, в которых твердые частицы склонны к образованию больших труднорастворимых кусков, например, образующихся при абсорбции атмосферной влаги либо при контакте твердой фазы с жидкостью, а после растворения твердой фазы продолжается процесс взаимодействия между тяжелым концентрированным раствором и не прореагировавшей легкой жидкостью, либо при суспендировании полидисперсной смеси частиц, образующих плотный осадок, в том числе гелеобразный, и может быть использовано в химической, нефтехимической, фармацевтической, пищевой, биотехнологической и других отраслях промышленности.

Известен пульсационный аппарат (МПК5 B01F 11/00, пат. РФ №2004316, 1993 г.), содержащий вертикальный корпус с размещенной в нем центральной трубой с открытым нижним концом, к верхнему концу которой присоединен источник пульсаций в виде штока с подпружиненной тарелкой, снабженный регулятором давления, динамическим компенсатором и упругими опорами, при этом центральная труба в верхней части заглушена и подсоединена к регулятору давления, а в центральной трубе выполнены переточные патрубки коноидальной формы. За счет нелинейности сопротивлений переточных патрубков в аппарате возникает циркуляционное течение, способствующее интенсификации массопереноса. Кроме того, массоперенос интенсифицируется за счет резонансных колебаний жидкости.

Во многих процессах (например, при растворении тяжелых частиц, либо при растворении частиц щелочи, которые быстро оплавляются, образуя крупные агрегаты частиц, покрытые трудно проницаемой коркой, погруженные в вязкую гелеобразную массу) это служит серьезным барьером на пути к повышению скорости массопереноса. Кроме того, в процессах, связанных с необходимостью эмульгирования (например, при жидкостной экстракции, при дегидратации жидкости концентрированным раствором щелочи), сильно сказывается неравномерность распределения вводимой в аппарат энергии, в результате чего удовлетворительное эмульгирование происходит только у нижнего среза трубы, а в целом эффективность известного аппарата недостаточно высокая.

К недостаткам известного аппарата относятся: при наличии в аппарате слоя твердых частиц, склонных к образованию больших трудно растворимых кусков, либо при суспендировании полидисперсной смеси части, образующих плотный осадок, нижняя часть трубы оказывается погруженной в слой частиц, и пульсации в ней не происходят. Вся энергия колебаний направляется в струи, образуемые в патрубках коноидальной формы; вследствие горизонтальной направленности этих патрубков струи не способствуют быстрому растворению и суспендированию слоя твердых частиц, в итоге процесс в основном определяется молекулярной диффузией, а перемешивание жидкости над слоем частиц лишь незначительно ускоряет массообменные процессы.

Известен пульсационный аппарат (МПК5 B01F 11/00, пат. РФ №2033855, 1995 г.), содержащий емкость с коническим рассекателем на днище, центральную трубу с открытым нижним концом с образованием зазора с днищем, герметизированную в верхней части и снабженной побудителем колебаний, соединенным с генератором колебаний, и упругими элементами в центральной трубе и кольцевой камере, побудитель колебаний установлен в верхней части центральной трубы при отношении величины зазора между ней и днищем к ее диаметру выбрано в диапазоне 0,3-0,65. Благодаря заявленным в изобретении параметрам при его использовании в резонансном режиме пульсаций достигается упрощение конструкции и снижение энергетических затрат.

Недостатком известного аппарата является наличие единственного протока через нижний конец центральной трубы, расположенный достаточно близко к дну аппарата. При заполнении аппарата твердой фазой труба заваливается слоем частиц, и пульсации жидкости через плотный слой в результате ее фильтрации становятся практически малозаметными, а при работе с веществами, склонными к гелеобразованию и затвердеванию выход жидкости из трубы полностью блокируется. В итоге возможности резонансного режима колебаний остаются не реализованными, и процессы растворения, суспендирования и эмульгирования определяются только молекулярной диффузией, а почти вся энергия привода расходуется на увеличение энтропии.

Наиболее близким к заявляемому является пульсационный аппарат (МПК5 B01F 11/00, пат. РФ №2497579, 2012 г.), содержащий вертикальный корпус с размещенной в нем трубой с образованием зазора с днищем, к верхнему концу которой присоединен источник пневматических пульсаций, упругими элементами в центральной трубе и кольцевой камере, согласно изобретению, нижняя часть трубы закрыта крышкой, в крышке и в погруженной в жидкость части трубы равномерно по их поверхностям установлены патрубки, при этом оси патрубков, установленных на крышке, расположены нормально к ее поверхности, а оси патрубков, установленных на трубе, расположены горизонтально либо опущены вниз под углом от 0 до 70°, причем отношение величины зазора между трубой и днищем к ее диаметру выполнено в диапазоне 0,5-2,0. В известном изобретении достигается равномерное распределение энергии пульсаций по объему аппарата, за счет создания высоких значений относительной скорости фаз, тонкого эмульгирования одной жидкой фазы в другой и дозированного ввода энергии в гетерогенную систему с заданной интенсивностью.

Вместе с тем, при проведении процессов с твердыми веществами, склонными к образованию больших трудно растворимых кусков либо про формировании на их поверхности плотной корки, например, в результате гидратации гранулированной щелочи, при растворении полидисперсных материалов высокой плотности, образующих плотный непроницаемый осадок, при большом соотношении массовых долей твердой и жидкой фаз в аппарате, выполненном по известному изобретению, происходит забивание нижних рядов сопел, и струи жидкости из них не способны пробиться через плотный слой твердой фазы. В результате работают только несколько верхних рядов сопел, оказавшихся выше уровня твердого осадка, но в силу того, что струи не направлены непосредственно на слой твердых частиц, растворение происходит значительно медленней. Кроме того, из-за того, что большая часть сопел оказывается недоступной для движения жидкости, в два раза и более снижается общая площадь сечения открытых сопел (по сравнению с площадью всех сопел), в итоге резко возрастает гидравлическое сопротивление открытых сопел, и скорость пульсаций в них снижается настолько, что затухание в колебательной системе приближается к критическому, выше которого резонансное увеличение амплитуды колебаний не проявляется. Это также приводит к ухудшению условий суспендирования (взвешивания) частиц, их растворения и эмульгирования.

Задача предлагаемого изобретения - повышение эффективности работы аппарата и улучшение условий перемешивания за счет перераспределения энергии пульсаций по зонам аппарата по мере растворения больших трудно растворимых кусков твердой фазы, а также суспендирования плотных слоев твердых частиц за счет тонкого «эмульгирования» одной жидкой фазы (высококонцентрированного раствора) в другой (в низкоконцентрированном растворе) путем создания высоких значений относительной скорости фаз и управляемого (в зависимости от стадии процесса) распределенного ввода энергии в гетерогенную систему с заданной интенсивностью.

Поставленная задача достигается тем, что в пульсационном аппарате для проведения массообменных процессов в гетерогенных системах жидкость - твердые частицы и жидкость - жидкость, содержащем вертикальный корпус с размещенной в нем пульсационной трубой с образованием зазора с днищем, к верхнему концу которой посредством пульсопровода присоединен источник пневматических пульсаций, газонаполненные упругие элементы в пульсационной трубе и кольцевой камере, согласно изобретению, пульсационная труба выполнена ступенчатой с переходом от трубы большего диаметра в верхней части к трубе меньшего диаметра в нижней части, а в кольцевом зазоре между трубами большего и меньшего диаметра на нижней плоскости трубы большего диаметра герметично установлено кольцо с соплами, распложенными равномерно по окружности кольца, направленными вниз с чередующимися углами к вертикали 5-10° и 25-60°, при этом на боковой поверхности трубы большего диаметра установлена кольцевая обечайка с соплами, направленными вверх и вниз с углом к вертикали 25-60°, к кольцевой обечайке присоединена трубка с запорным клапаном, подключенным к верхней части пульсопровода, а на боковой поверхности трубы меньшего диаметра установлены сопла, направленные вверх с углом к вертикали 25-60°, причем на боковой поверхности трубы большего диаметра установлен дополнительный ряд сопел, направленных с чередующимися углами к вертикали вниз с углом к вертикали 25-60° и вверх с углом к вертикали 25-60°.

Поставленная задача достигается также тем, что в пульсационном аппарате соотношение диаметров труб большего и меньшего диаметра выдержано в интервале 1,2-2, а количество сопел выбрано таким, чтобы общая площадь их поперечного сечения, отнесенная к площади кольцевого зазора между трубами большего и меньшего диаметра, составляла не менее 0,25.

Поставленная задача достигается также тем, что в пульсационном аппарате переход от верхней части пульсационной трубы к пульсопроводу расположен внутри аппарата на высоте, на 150-200 мм превышающей уровень заполнения аппарата жидкостью, а концы сопел, расположенных равномерно по окружности кольца, установленного в зазоре между трубами большего и меньшего диаметра, а также сопел, расположенных на боковой поверхности трубы большего диаметра, находятся на высоте не выше 100-150 мм и не ниже 50-70 мм уровня слоя твердых частиц, отношение величины зазора между торцом трубы меньшего диаметра и днищем к ее диаметру выполнено в диапазоне 0,3-0,7, а на дне аппарата установлен конический рассекатель.

Поставленная задача достигается также тем, что в пульсационном аппарате источник пневматических пульсаций выполнен в виде мембранного или сильфонного блока, снабженного электромеханическим приводом, либо в виде управляемого пневматического клапана, соединенного с источником сжатого газа-инерта.

Техническим результатом является повышение надежности и эффективности работы аппарата, улучшение условий перемешивания на каждой из стадий процесса за счет перераспределения энергии пульсаций по зонам аппарата, интенсификация массообмена в гетерогенных системах жидкость - твердые частицы и жидкость - жидкость, более эффективное использование вводимой в аппарат энергии. Этот результат достигается за счет применения двухступенчатой конструкции пульсационной трубы, позволяющей повысить равномерность распределения энергии пульсаций по объему аппарата на разных стадиях процесса.

Заявляемое техническое решение является новым, обладает изобретательским уровнем и промышленно применимо.

На фиг. 1 представлен общий вид аппарата, на фиг. 2 и 3 - вид А (варианты исполнения 1 и 2, на фиг. 2 кольцевая обечайка 20 с соплами 21 условно не показана), на фиг. 4 - вид Б и сечение В-В. На фиг. 5 а-в изображены стадии работы аппарата в процессе размывания осадка, на фиг. 5г - особенности формирования потоков при наличии кольцевой обечайки 20 и сопел 21 и открытом клапане 23. На фиг. 6 представлена схема работы аппарата при эмульгировании. На фиг. 7 представлена схема аппарата с источником пневматических пульсаций в виде управляемого пневматического клапана, соединенного с источником сжатого газа-инерта.

Пульсационный аппарат для проведения массообменных процессов в гетерогенных системах жидкость - твердые частицы и жидкость - жидкость содержит вертикальный корпус 1 с размещенной в нем пульсационной трубой 2 с образованием зазора h1 с днищем 3, к верхнему концу которой посредством пульсопровода 4 присоединен источник пневматических пульсаций 5. Над уровнем жидкости в кольцевой камере между трубой 2 и корпусом 1 аппарата и трубе 2 при частичном заполнении аппарата формируются газонаполненные упругие элементы 6 и 7. При необходимости организации «дыхания» аппарата (непрерывного протока газа-инерта, вводимого в кольцевую камеру между трубой 2 и корпусом 1) упругий элемент 6 может быть открытым, т.е. сообщаться с системой конденсации паров и очистки газов, как показано на фиг. 7.

Наличие газонаполненных элементов позволяет установить собственную частоту колебаний системы «жидкость-частицы-газонаполненные элементы» в диапазоне значений порядка 0,3-15 Гц (частота рассчитывается в зависимости от размера аппарата по методике [Абиев Р.Ш. Моделирование нелинейных колебаний жидкости в пульсационном аппарате переменного сечения с использованием одномерной модели // Теор. основы хим. технол., 2017, том 51, №1, с. 58-71]) и позволяет вести процесс в резонансном режиме колебаний с использованием электромеханического привода.

Пульсационная труба 2 выполнена ступенчатой с переходом от трубы 8 большего диаметра в верхней части к трубе 9 меньшего диаметра в нижней части, а в кольцевом зазоре между трубами большего 8 и меньшего 9 диаметра на нижней плоскости трубы 8 большего диаметра герметично установлено кольцо 10 с соплами 11, расположенными равномерно по окружности кольца 10, направленными вниз с чередующимися углами к вертикали ϕ1=5-10° и ϕ2=25-60°, причем на боковой поверхности трубы 8 большего диаметра установлен дополнительный ряд сопел 12, направленных с чередующимися углами к вертикали вниз с углом к вертикали ϕ3=25-60° и вверх. с углом к вертикали ϕ4=25-60°. Чередование наклона сопел 11 и 12 показано на фиг. 4. Сопла 12 на фиг. 1 и фиг. 7 условно не показаны.

Выполнение данных условий позволяет размыть при помощи струй, истекающих через сопла 11, доступ к трубе 9, а труба 9, обладающая большим проходным сечением, обеспечивает высокую интенсивность колебаний.

Соотношение диаметров труб большего 8 и меньшего 9 диаметра выдержано в интервале

где D1 - диаметр трубы 8; D2 - диаметр трубы 9,

а количество сопел 11 и 12 выбрано таким, чтобы общая площадь их поперечного сечения, отнесенная к площади кольцевого зазора между трубами большего 8 и меньшего 9 диаметра, составляла не менее 0,25.

Выполнение условия (1) позволяет добиться такого распределения пульсирующих потоков жидкости между выходом из трубы 9 и соплами 11, 12, чтобы преобладающая часть энергии была направлена в зону наиболее тяжелого раствора (при растворении) или суспензии (при суспендировании), т.е. в придонную зону аппарата. Кроме того, при этих условиях затухание в системе, связанное с гидравлическим сопротивлением трубы 9 и сопел 11, 12, оказывается существенно ниже критического, и затрачиваемая энергия преимущественно направляется на суспендирование и растворение частиц.

Переход от верхней части пульсационной трубы 2 к пульсопроводу 4 расположен внутри аппарата на высоте, превышающей уровень заполнения аппарата жидкостью на величину

а концы сопел 11 и 12 находятся на высоте h3 не выше 100-150 мм и не ниже 50-70 мм уровня h4 слоя твердых частиц 13, т.е. выполняется двойное неравенство:

Выполнение условия (2) позволяет добиться свободных пульсаций жидкости в верхней части трубы 2, без риска ее соударений с переходом от пульсационной трубы 2 к пульсопроводу 4. Выполнение условия (3) позволяет достичь, с одной стороны, не слишком глубокого залегания сопел под слоем частиц (в противном случае, при h3<h4 - (50-70 мм), затруднен выход жидкости из них), с другой стороны, сохранения энергии струй, проникающих через толщу жидкости к поверхности слоя твердых частиц.

Отношение величины зазора между торцом трубы 9 меньшего диаметра и днищем аппарата к ее диаметру выполнено в диапазоне

а на дне 3 аппарата установлен конический рассекатель 14 (показан на фиг. 3). Конический рассекатель 14 может быть установлен стационарно либо совмещен с подъемной тарелью донного сливного клапана 15.

Выполнение условия (4) позволяет получить максимальный эффект от струй пульсирующей жидкости, истекающих в щелевом зазоре между торцом трубы 9 и дном 3 аппарата. Конический рассекатель 14 позволяет более эффективно использовать объем аппарата, поскольку исключает возникновение застойных зон твердых частиц.

Источник пневматических пульсаций 5 выполнен в виде мембранного или сильфонного блока (на фиг. 1 показан упрощенно), состоящего из электромеханического привода с регулируемой частотой пульсаций, периодически сжимающего сильфонную либо мембранную камеру (на фиг. 1 показаны условно в совокупности в виде блока 5), соединенного с пульсационной трубой 2 при помощи пульсопровода 4, представляющего собой трубу для передачи пневматических пульсаций (импульсов сжатого газа), либо в виде управляемого пневматического клапана 16, соединенного с источником сжатого газа-инерта (например, компрессора 17) для передачи энергии давления рабочей среде в аппарате на стадии подачи газа и с атмосферой (через систему конденсации паров и очистки газа, на фиг. 7 не показана) - для сброса накопленной энергии давления на стадии сброса газа. Пневматический клапан 16.управляется блоком генерирования импульсов 18.

Штуцер 19 служит для загрузки исходных компонентов, а донный клапан 15 - для выгрузки готовых продуктов из аппарата.

На боковой поверхности трубы 8 большего диаметра установлена кольцевая обечайка 20 с соплами 21, направленными вверх и вниз с углом к вертикали 25-60°, к верхней части кольцевой обечайки 20 присоединена трубка 22, на верхнем конце которой размещен запорный клапан 23 (может быть выполнен дистанционно управляемым), подключенный к верхней части пульсопровода 4, а на боковой поверхности трубы 9 меньшего диаметра установлены сопла 24, направленные вверх с углом к вертикали 25-60°. Система передачи пульсаций жидкости, образованная элементами 20-23, необходима для своевременного (на соответствующей стадии технологического процесса) подвода энергии пульсаций в верхние слои обрабатываемой среды, с целью достижения необходимого уровня перемешивания; в этом случае клапан 23 открыт. На стадиях процесса, когда перемешивание в верхних слоях обрабатываемой среды нежелательно, и клапан 23 закрыт.

Для улучшения условий распределения жидкости по соплам 11 и увеличения прочности установки трубы 9 в трубе 8 между ними могут быть вварены радиальные ребра 25, показанные на фиг. 4 (разрез В-В).

Аппарат работает следующим образом. В корпус 1 через штуцер 19 загружают исходные компоненты - две жидкие взаимно нерастворимые фазы, либо жидкую и твердую фазы, после чего штуцер 19 закрывают либо подключают к системе «дыхания». Включают источник пневматических пульсаций 5, преимущественно с частотой, близкой к частоте собственных колебаний системы, за счет чего обеспечиваются резонансные колебания гетерогенной смеси в аппарате. Значение угловой частоты резонансных колебаний ω0 определяется расчетным путем (Абиев Р.Ш., Островский Г.М. Пульсационная резонансная аппаратура для процессов в жидкофазных средах // Хим. пром., 1998, №8, с. 468-478; Абиев Р.Ш. Моделирование нелинейных колебаний жидкости в пульсационном аппарате переменного сечения с использованием одномерной модели // Теор. основы хим. технол., 2017, том 51, №1, с. 58-71) либо экспериментально - по максимальной амплитуде пульсаций. Благодаря тому, что частота пульсаций в аппарате находится в узком интервале вблизи частоты резонансных колебаний, в гетерогенной системе в аппарате возникают интенсивные колебания, характеризуемые возрастанием амплитуды колебаний всех гидродинамических параметров скорости, ускорения, давления в упругих элементах 6 и 7.

Выполнение трубы 2 ступенчатой с переходом от трубы 8 большего диаметра в верхней части к трубе 9 меньшего диаметра и оснащение ее соплами позволяет добиться повышения эффективности работы аппарата следующим образом. После загрузки аппарата твердой фазой нижний срез трубы 9 оказывается глубоко погруженным в слой твердых частиц, а сопла 11 и 12 остаются свободными либо погружены на небольшую глубину. При заливке жидкой фазы в трубу 2 выходы из сопел 11, 12 немного освобождаются, в той степени, которая позволяет жидкости пульсировать, прорываясь через слой частиц, а труба 9 при этом остается заваленной и практически не участвует в процессе перемешивания.

До включения системы пульсаций 5 (в начале процесса) клапан 23 закрыт, и пульсации через сопла 21 в кольцевой обечайке 20 не происходят. Это необходимо для того, чтобы на начальной стадии процесса вся энергия пульсаций расходовалась на размытие слоя твердых частиц 13.

При включении системы пульсаций 5 и ее настройке на резонансную частоту в трубе 2 возникают резонансные колебания, причем переток жидкости из трубного пространства трубы 2 в кольцевое пространство вокруг нее осуществляется через сопла 12 (Фиг. 5а). Образующиеся при этом струи, направленные вниз с разными углами наклона к вертикали, достаточно равномерно по площади размывают слой щелочи, постепенно освобождая трубу 9 и выход из нее (нижний срез). Сопла 12, направленные вверх, способствуют выбросу струй жидкости с высокой концентрацией раствора (либо суспендированных частиц) в верхние слои жидкости, и через них происходит всасывание в пульсационную трубу низкоконцентрированного раствора из верхних слоев (Фиг. 5г). Благодаря этому дополнительно возрастает эффективность перемешивания. Такие же явления происходят с соплами 24, установленными в нижней части трубы 9, по мере их освобождения от плотного слоя частиц.

Как только освобождается нижний конец трубы 9, пульсации жидкости распределяются между трубой 9, соплами 24 и соплами 11 и 12 (Фиг. 5б). Веерообразная струя, формируемая в кольцевой щели между нижним срезом трубы 9 и дном 3 аппарата, создает крупномасштабное перемешивание с образованием устойчивого тороидального вихря вблизи дна аппарата (Фиг. 5в). Сопла 11 и 12 активно воздействуют на вышележащие слои, подхватывая макрообъемы жидкости, поднятые вихрем со дна, и перераспределяя их (Фиг. 5в; Фиг. 6). Это способствует более быстрому растворению твердой фазы и ее распределению в объеме жидкости.

Пульсирующие струи 26, прорывающиеся через сопла 11 и 12, проникая глубоко в слой частиц 13 (либо в слой тяжелой жидкости), быстро размывают его (Фиг. 5а-в), способствуя сильному диспергированию жидкости (для систем жидкость-жидкость) либо к взвешиванию твердой фазы (для систем жидкость-твердое), а частицы дисперсной фазы с высокой равномерностью распределяются по объему аппарата. За счет этого существенна возрастает площадь контакта. фаз, увеличивается скорость их относительного движения, что приводит к многократному ускорению процессов массообмена между жидкой сплошной фазой и дисперсной (твердой или жидкой) фазой. Кроме того, при обработке систем жидкость-жидкость происходит тонкое эмульгирование одной жидкой фазы в другой (Фиг. 5г), также сопровождающееся созданием развитой поверхности контакта фаз и образованием динамически устойчивой эмульсии во всем объеме аппарата. Это способствует быстрому протеканию массообменных процессов и более рациональному использованию вводимой в аппарат энергии.

Пульсирующие струи 26, прорывающиеся через открывшиеся сопла 24, также способствуют «переброске» (конвективному переносу) концентрированных масс раствора из нижних слоев суспензии/эмульсии в верхние слои. За счет этого происходит ускорение процесса растворения твердых частиц и увеличение коэффициентов массоотдачи от капель при жидкостной экстракции.

После окончания растворения твердой фазы или при приближении к этому моменту дальнейшее направление всей энергии пульсаций в нижнюю часть аппарата нецелесообразно. По этой причине в этот промежуток времени открывают клапан 23, что позволяет направить часть энергии пульсаций через трубку 22 в кольцевую обечайку 20, а далее - к соплам 21. Струи 26, прорывающиеся через сопла 21, способствуют интенсивному перемешиванию непосредственно в верхнем слое обрабатываемой среды. Наклон сопел 21 вверх и вниз под углом 25-60°, обеспечивает направление струй 26, истекающих из сопел 21 как в сторону нижнего слоя, захватывая из него концентрированные массы раствора/эмульсии, так и вверх, насыщая самые верхние слои жидкости растворенным веществом или каплями эмульсии. Благодаря этому ускоряется достижение состояния раствора, близкого к равновесному (для систем жидкость-твердое), либо повышается равномерность распределения капель эмульсии (для систем жидкость-жидкость).

Дополнительная секция сопел 21, установленных в кольцевой обечайке 20, позволяет реализовать при помощи трубки 22 и клапана 23 принцип управляемого (в зависимости от стадии процесса) распределенного ввода энергии в гетерогенную систему с заданной интенсивностью. Направление вверх и вниз с углом к вертикали 25-60° сопел 21 позволяет добиться высокой равномерности распределения энергии пульсаций в верхнем слое обрабатываемой жидкости.

Вышеуказанные явления и процессы приводят к существенному улучшению условий перемешивания и повышение эффективности работы аппарата.

Пример конкретного выполнения 1. В аппарат-прототип, выполненный по пат. РФ №2497579, с диаметром корпуса 500 мм и диаметром пульсационной трубы 200 мм, снабженный 81 соплами диаметром 6 мм (уровень нижних сопел 150 мм от дна аппарата) и двумя смотровыми окнами в боковой стенке, насыпан слой речного песка высотой 200 мм и залита вода до уровня 900 мм. При включении пульсационного устройства струи, истекающие из сопел, в нижней части трубы размыли слой песка в виде «кратеров» диаметром до 50 мм, в которых наблюдается движение частиц песка. Остальная масса песка неподвижна. Частота колебаний источника пневматических пульсаций 5 варьировалась от 1 Гц до 1,8 Гц, на результат существенного влияния не оказывала.

Пример конкретного выполнения 2. При проведении того же процесса в аппарате, выполненному по предлагаемому изобретению (фиг. 2) диаметры трубы 8 и трубы 9 составляют соответственно 200 мм и 140 мм. Уровень h1 составил 60 мм, т.е. 0,43 от диаметра трубы. На дно аппарата насыпан слой песка высотой около 20 мм, в емкость налита вода до уровня 900 мм от дна. Частота пульсаций источника пневматических пульсаций 5 составляет 1,4 Гц. Наблюдалось устойчивое интенсивное перемешивание песка. В течение 15-20 секунд после начала пульсаций песок равномерно распределился по окружности вдоль стенки, при этом дно 3 аппарата под трубой 9 полностью очистилось от песка. Таким образом, проведенный эксперимент демонстрирует высокую интенсивность перемешивания в придонной зоне по сравнению с прототипом. Частота пульсаций варьировали в диапазоне от 1,07 Гц до 1,8 Гц. Установлено, что наибольшая интенсивность перемешивания наблюдается при 1,32-1,35 Гц, что соответствует расчетному значению резонансной частоты колебаний. По мере «ухода» с резонансной частоты интенсивность перемешивания постепенно снижалась, вплоть до практического полного затухания при приближении к крайним значениям указанного диапазона частоты пульсаций.

Пример конкретного выполнения 3. Условия эксперимента такие же, как в примере 2, за исключением того, что уровень песка в емкости увеличен до 110 мм, при этом нижний срез трубы 9 полностью погружен в слой песка. Пульсатор включен при частоте вращения электродвигателя источника пневматических пульсаций 80 об/мин (1,33 Гц). Наблюдалось постепенное освобождение трубы 9 от песка и интенсивное перемешивание песка.

Пример конкретного выполнения 4. Условия эксперимента такие же, как в примере 2, но вместо песка в аппарат засыпано 45 кг поваренной соли (NaCl), вода залита до уровня 900 мм. Труба 9 завалена на 100 мм от нижнего среза. Источник пневматических пульсаций 5 включен с частотой вращения 70 об/мин (1,17 Гц), при которой наблюдалось устойчивое и интенсивное перемешивание соли. Амплитуда колебаний раствора в кольцевом пространстве достигала 20-30 мм. За 25 минут работы пространство вокруг трубы 9 очистилось, соль растворилась, осталось небольшое количество на периферии дна 3, над ним просматриваются мелкодисперсные взвеси соли. За 1 час работы пульсационного аппарата получили насыщенный раствор соли.

Пример конкретного выполнения 5. Условия эксперимента такие же, как в примере 2, но вместо песка в аппарат засыпано 50 кг поваренной соли (NaCl), вода залита до уровня 900 мм. Источник пневматических пульсаций 5 включен с частотой вращения 70 об/мин (1,17 Гц). Наблюдается вертикальное колебание жидкости в аппарате амплитудой 15-20 мм, в трубе (по расчету через уравнение неразрывности) - до 100 мм. По поведению частиц соли наблюдалось интенсивное ее перемешивание. Перемешивание продолжалось 40 мин. С помощью ареометра произведен замер плотности полученного раствора соли, которая составила 1,2 г/см3, что соответствует насыщенному раствору соли.

Пример конкретного выполнения 6. Условия опыта - те же, что и в примере конкретного выполнения 5, он является продолжением опыта, описанного в примере 5. В аппарат с концентрированным раствором соли засыпали три ведра песка объемом восемь литров каждое. Включили источник пневматических пульсаций 5 с частотой вращения двигателя 70 об/мин (частота пульсаций 1,17 Гц) и продолжили эксперимент с перемешиванием песка в растворе соли. Наблюдали концентрированную взвесь песка в аппарате. Зачерпнули в прозрачную емкость объемом 1 литр пробу из верхнего слоя для визуального контроля взвесей, дали отстоятся 1 минуту, наблюдали на дне емкости осадок из песчинок, что свидетельствует о достаточно равномерном распределении дисперсной фазы по объему аппарата.

В процессе работы пульсационного устройства подбирали режим его работы подбором оборотов частоты вращения электродвигателя в сторону понижения начиная с 70 об/мин до 60 об/мин и в сторону повышения начиная с 60 об/мин до 100 об/мин. Максимальный эффект перемешивания при частоте вращения электродвигателя 70 об/мин (1,17 Гц).

Пример конкретного выполнения 7. Условия опыта - те же, что и в примере конкретного выполнения 5, но в качестве твердой фазы использована гранулированная щелочь NaOH, загруженная в аппарат на высоту 400 мм. Вода залита до уровня 900 мм. Источник пневматических пульсаций 5 включен с частотой вращения 82 об/мин (1,37 Гц). Сначала наблюдается образование плотной массы концентрированного раствора щелочи, содержащего нерастворенные частицы, часть которых образует большие труднорастворимые куски размером 30-50 мм. Через 20 минут пульсаций труба 9 открывается. Пульсирующие струи 26, прорывающиеся через сопла 24, 11 и 12, проникая глубоко в слой частиц щелочи 13, быстро размывают его, способствуя взвешиванию твердой фазы и ее быстрому растворению. В этот же момент открывают клапан 23. При этом в верхней части аппарата наблюдается проникновение струй 26, истекающих из сопел 12 и 21 высококонцентрированной жидкости в низко концентрированный верхний слой, сопровождающийся «эмульгированием», что также ускоряет процесс достижения равновесного состояния. В течение 40 мин пульсаций происходит полное растворение щелочи с достижением равновесной концентрации (концентрации насыщения).

Пример конкретного выполнения 8. Условия опыта - те же, что и в примере конкретного выполнения 5, но вместо твердой фазы в аппарат залито моторное масло в объеме 25 литров, сверху залита вода, так что общий уровень составил 900 мм от дна. Клапан 23 закрыт. Включили источник пневматических пульсаций 5 с частотой вращения двигателя 70 об/мин (частота пульсаций 1,17 Гц). Через 10 минут работы перемешивания (эмульгирования) воды с маслом не наблюдалось. Увеличили частоту вращения вала источника пневматических пульсаций 5 до 92 об/мин (частота пульсаций 1,53 Гц). Через 7 минут работы пульсационного устройства стали появляться капельки масла в нижних слоях, в области выброса струи из сопел устройства. При повышении частоты вращения вала до 95 об/мин (частота пульсаций 1,58 Гц) получена эмульсия с минимальным размером капель. Открыли клапан 23, в результате чего возникли пульсации через сопла 21 в виде струй 26. Эмульсия достаточно равномерно распределилась по высоте аппарата. Данный опыт показывает возможности эмульгирования в предлагаемом аппарате, а также подтверждает факт увеличения частоты резонансных колебаний при уменьшении плотности рабочей среды в аппарате.

Таким образом, предлагаемое изобретение позволяет повысить эффективность работы аппарата и улучшить условия перемешивания за счет перераспределения энергии пульсаций по зонам аппарата по мере растворения больших труднорастворимых кусков твердой фазы, образованных при абсорбции атмосферной влаги либо при первом контакте твердых частиц с жидкостью, а после частичного или полного растворения кусков твердой фазы - за счет тонкого «эмульгирования» одной жидкой фазы (высококонцентрированного раствора) в другой (в низко концентрированном растворе), а также суспендирования плотных слоев твердых частиц путем создания высоких значений относительной скорости фаз и управляемого (в зависимости от стадии процесса) распределенного ввода энергии в гетерогенную систему с заданной интенсивностью.

1. Пульсационный аппарат для проведения массообменных процессов в гетерогенных системах жидкость - твердые частицы и жидкость - жидкость, содержащий вертикальный корпус с размещенной в нем пульсационной трубой с образованием зазора с днищем, к верхнему концу которой посредством пульсопровода присоединен источник пневматических пульсаций, газонаполненные упругие элементы в пульсационной трубе и кольцевой камере, отличающийся тем, что пульсационная труба выполнена ступенчатой с переходом от трубы большего диаметра в верхней части к трубе меньшего диаметра в нижней части, а в кольцевом зазоре между трубами большего и меньшего диаметров на нижней плоскости трубы большего диаметра герметично установлено кольцо с соплами, распложенными равномерно по окружности кольца, направленными вниз с чередующимися углами к вертикали 5-10° и 25-60°, при этом на боковой поверхности трубы большего диаметра установлена кольцевая обечайка с соплами, направленными вверх и вниз с углом к вертикали 25-60°, к кольцевой обечайке присоединена трубка с запорным клапаном, подключенным к верхней части пульсопровода, а на боковой поверхности трубы меньшего диаметра установлены сопла, направленные вверх с углом к вертикали 25-60°.

2. Пульсационный аппарат по п. 1, отличающийся тем, что на боковой поверхности трубы большего диаметра установлен дополнительный ряд сопел, направленных с чередующимися углами к вертикали вниз с углом к вертикали 25-60° и вверх с углом к вертикали 25-60°.

3. Пульсационный аппарат по п. 1, отличающийся тем, что соотношение диаметров труб большего и меньшего диаметров выдержано в интервале 1,2-2, а количество сопел выбрано таким, чтобы общая площадь их поперечного сечения, отнесенная к площади кольцевого зазора между трубами большего и меньшего диаметров, составляла не менее 0,25.

4. Пульсационный аппарат по п. 1, отличающийся тем, что переход от верхней части пульсационной трубы к пульсопроводу расположен внутри аппарата на высоте, на 150-200 мм превышающей уровень заполнения аппарата жидкостью, а концы сопел, расположенных равномерно по окружности кольца, установленного в зазоре между трубами большего и меньшего диаметров, а также сопел, расположенных на боковой поверхности трубы большего диаметра, находятся на высоте не выше 100-150 мм и не ниже 50-70 мм уровня слоя твердых частиц, отношение величины зазора между торцом трубы меньшего диаметра и днищем к ее диаметру выполнено в диапазоне 0,3-0,7, а на дне аппарата установлен конический рассекатель.

5. Пульсационный аппарат по п. 1, отличающийся тем, что источник пневматических пульсаций выполнен в виде мембранного или сильфонного блока, снабженного электромеханическим приводом, либо в виде управляемого пневматического клапана, соединенного с источником сжатого газа-инерта.



 

Похожие патенты:

Группа изобретений относится к клеящей композиции, способу склеивания первой подложки со второй подложкой и к склеенной структуре. Клеящая композиция содержит непрерывную водную среду, а также (i) частицы полимера, диспергированные в водной среде, и (ii) частицы, содержащие амид жирной кислоты и одну или большее количество жирных кислот.

Предлагаемое изобретение относится к аппаратам для проведения массообменных процессов в гетерогенных системах жидкость - твердые частицы и жидкость - жидкость (например, растворение, дегидратация, эмульгирование, экстрагирование), в особенности для процессов, в которых твердые частицы склонны к образованию больших труднорастворимых кусков, например, образующихся при абсорбции атмосферной влаги либо при контакте твердой фазы с жидкостью, а после растворения твердой фазы продолжается процесс взаимодействия между тяжелым концентрированным раствором и непрореагировавшей легкой жидкостью, либо при суспендировании полидисперсной смеси частиц, образующих плотный осадок, в том числе гелеобразный.

Ловушка вредных испарений и запахов относится к машиностроению, в частности к механическому устройству, защищающему экологию и персонал, например, обслуживающий пункты/места налива или забора топлива для автомобильных и иных двигателей, использующих бензин, дизельное топливо и пр.

Изобретение относится к средствам водоподготовки и водоочистки и может быть использовано в трубопроводах и бассейнах. Распределительное устройство коагулянта для водоподготовки содержит лучераспределитель 1, образованный из радиально расположенных перфорированных отверстиями трубок.

Изобретение относится к средствам водоподготовки и водоочистки. Распределительная система коагулянта для водоподготовки содержит ограниченную часть емкости 1, поперечное сечение входа 2 в которую перекрыто луче-распределителем 3, образованным из радиально расположенных перфорированных отверстиями 5 трубок 4.

Изобретение относится к установке в виде технологических линий для приготовления продукции/смесей в жидкой среде и применяется в изготовлении лакокрасочной продукции, а также может применяться в переработке нефтепродуктов, химической и пищевой, при производстве строительных материалов, а также получении частиц химических элементов для фармацевтической отрасли и т.п.

Изобретение относится к обработке воды и может быть использовано для аэрации воды и ее очистки от растворенных газов, преимущественно в резервуарах. Устройство для аэрации воды в верхних слоях при постоянном уровне воды в резервуаре содержит каркас, крепление, по меньшей мере, один компрессор, по меньшей мере, один воздухоподводящий трубопровод и, по меньшей мере, один аэратор.

Изобретение относится к подготовке жидкого топлива к сжиганию и может быть использовано для утилизации жидких горючих отходов. Устройство содержит бак-ресивер (8), выполненный единым элементом.

Изобретение относится к аэрационной установке для обработки сточных вод. Многоступенчатая аэрационная установка включает по меньшей мере три вертикально ориентированных аэрационных блока, содержащих первый аэрационный блок, который принимает смесь жидкости и газа из источника газа и жидкости и два или более расположенных ниже аэрационных блоков.

Изобретение относится к оборудованию для получения дисперсных систем, преимущественно "жидкость - жидкость", и может быть использовано в химической, пищевой, микробиологической и других отраслях промышленности.

Предлагаемое изобретение относится к аппаратам для проведения массообменных процессов в гетерогенных системах жидкость - твердые частицы и жидкость - жидкость (например, растворение, дегидратация, эмульгирование, экстрагирование), в особенности для процессов, в которых твердые частицы склонны к образованию больших труднорастворимых кусков, например, образующихся при абсорбции атмосферной влаги либо при контакте твердой фазы с жидкостью, а после растворения твердой фазы продолжается процесс взаимодействия между тяжелым концентрированным раствором и непрореагировавшей легкой жидкостью, либо при суспендировании полидисперсной смеси частиц, образующих плотный осадок, в том числе гелеобразный.

Предлагаемое изобретение относится к аппаратам для проведения массообменных процессов в гетерогенных системах жидкость - твердые частицы и жидкость - жидкость (например, растворение, дегидратация, эмульгирование, экстрагирование), в особенности для процессов, в которых твердые частицы склонны к образованию больших труднорастворимых кусков, например, образующихся при абсорбции атмосферной влаги либо при контакте твердой фазы с жидкостью, а после растворения твердой фазы продолжается процесс взаимодействия между тяжелым концентрированным раствором и непрореагировавшей легкой жидкостью, либо при суспендировании полидисперсной смеси частиц, образующих плотный осадок, в том числе гелеобразный.

Изобретение относится к технологическим линиям для переработки нефтесодержащих отходов. Способ разделения нефтешлама включает нагрев и перемешивание нефтешлама в присутствии деэмульгатора до температуры 60-90°C, акустическую обработку потока нефтешлама ультразвуковым кавитационным устройством.

Изобретение относится к области энергетики, а именно к теплотехнике. Раскрыт способ образования кавитационных зон в потоке негорючей жидкости и управления их разрушением, включающий движущийся поток жидкости, средства для образования кавитационных зон в потоке жидкости.

Группа изобретений относится к области биохимии. Предложен способ ультравысокопроизводительного скрининга клеток или микроорганизмов, а также представляющее собой биосовместимую двойную эмульсию вода-масло-вода средство для ультравысокопроизводительного скрининга клеток или микроорганизмов.

Изобретение относится к способу и устройству смешения компонентов в жидкой среде, преимущественно к аппаратам периодического действия, и может быть использовано, например, в химической, нефтехимической, пищевой и других отраслях, где необходим этот технологический процесс.

Изобретение относится к установке в виде технологических линий для приготовления продукции/смесей в жидкой среде и применяется в изготовлении лакокрасочной продукции, а также может применяться в переработке нефтепродуктов, химической и пищевой, при производстве строительных материалов, а также получении частиц химических элементов для фармацевтической отрасли и т.п.

Изобретение относится к области биотехнологии иммунобиологических препаратов для медицинского применения, в частности к выделению гамма-глобулиновой фракции белков сыворотки иммунной крови.

Изобретение относится к способу получения водной эмульсии ненасыщенной полиэфирной смолы, предназначенной для использования в качестве пленкообразующего компонента замасливателя, наносимого на поверхность элементарных волокон (филаментов) при формовании комплексной нити в процессе изготовления стеклянных, базальтовых и углеродных волокон.

Изобретение относится к оборудованию для получения дисперсных систем, преимущественно "жидкость - жидкость", и может быть использовано в химической, пищевой, микробиологической и других отраслях промышленности.

Предлагаемое изобретение относится к аппаратам для проведения массообменных процессов в гетерогенных системах жидкость - твердые частицы и жидкость - жидкость (например, растворение, дегидратация, эмульгирование, экстрагирование), в особенности для процессов, в которых твердые частицы склонны к образованию больших труднорастворимых кусков, например, образующихся при абсорбции атмосферной влаги либо при контакте твердой фазы с жидкостью, а после растворения твердой фазы продолжается процесс взаимодействия между тяжелым концентрированным раствором и непрореагировавшей легкой жидкостью, либо при суспендировании полидисперсной смеси частиц, образующих плотный осадок, в том числе гелеобразный.
Наверх