Одометрическая система навигации

Изобретение относится к области устройств для определения координат местоположения наземного транспортного средства, в частности к одометрическим системам навигации, и может быть применено для осуществления сухопутной навигации многоосных подвижных объектов. Одометрическая система навигации отличается от аналогов датчиком линейного перемещения, корпус которого прикреплен к кузову транспортного средства, ползунок датчика линейного перемещения жестко соединен с валом колеса транспортного средства, выход датчика линейного перемещения соединен с входом вычислительного устройства. Благодаря этому, при движении многоосного транспортного средства по местности, имеющей неровности, высота которых не превышает хода амортизаторов подвески, и расстояние между которыми меньше его колесной базы (микрорельеф), будет обеспечиваться компенсация погрешности измерения горизонтальной составляющей пройденного пути наземным транспортным средством, обусловленной микрорельефом местности. Технический результат - повышение точности измерения горизонтальной составляющей пройденного наземным транспортным средством пути. 2 ил.

 

Изобретение относится к области устройств для определения координат местоположения наземного транспортного средства, в частности, к одометрическим системам навигации, и может быть применено для осуществления сухопутной навигации многоосных подвижных объектов.

Известные одометрические системы навигации содержат в своем составе механический датчик пути, соединенный с ходовой частью транспортного средства, курсовую систему, вычислительное устройство, курсоуказатель и планшет индикаторный (см., например, А.А. Псарёв и др. Военная топография. М., Военное издательство, 1986 г., стр. 267). Однако, точность получения в таких системах информации о горизонтальной составляющей пройденного пути, используемой для счисления приращений координат, существенно зависит от ряда факторов, к которым, в частности, относится макро- и микрорельеф местности. Если влияние макрорельефа местности (участков неровностей рельефа, соизмеримых с базой транспортного средства) можно компенсировать в данных системах путем измерения датчиком горизонта курсовой системы углов наклона продольной оси транспортного средства с последующим их учетом при вычислении горизонтальной составляющей пройденного пути, то влияние микрорельефа местности не компенсируется.

Цель настоящего изобретения - повышение точности измерения горизонтальной составляющей пройденного наземным транспортным средством пути за счет исключения погрешности, обусловленной микрорельефом местности.

Указанная цель достигается тем, что в предлагаемом устройстве в отличие от прототипа дополнительно введен датчик линейного перемещения, корпус которого прикреплен к кузову транспортного средства, ползунок датчика линейного перемещения жестко соединен с валом колеса транспортного средства, выход датчика линейного перемещения соединен с входом вычислительного устройства.

Сущность изобретения поясняется чертежом (фиг. 1), где показана одометрическая система навигации. Устройство включает в себя датчик линейного перемещения 5, корпус которого соединен с кузовом 1 транспортного средства, а ползунок 6 жестко соединен с валом 2 колеса 3 транспортного средства, При этом вал 2 колеса 3 соединен с кузовом 1 транспортного средства с помощью подвески, имеющей амортизатор 4. Выход датчика линейного перемещения 5 соединен с первым входом вычислительного устройства 8. Со вторым входом вычислительного устройства соединен выход механического датчика пути 7, с третьим входом соединен выход курсовой системы 9. Выходы вычислительного устройства 8 соединены со входами курсоуказателя 10 и планшета индикаторного 11.

Устройство работает следующим образом. При движении многоосного транспортного средства по местности, имеющей неровности высота которых не превышает хода амортизаторов 4 подвески его колес 3 и расстояние между которыми меньше его колесной базы (микрорельеф), продольная ось транспортного средства практически не будет изменять своего положения относительно плоскости горизонта, в то время как его колеса будут обкатывать каждую неровность. Под действием неровности на i-ом отрезке пути колесо 3, а следовательно и жестко связанный с валом 2 колеса ползунок 6 датчика линейного перемещения 5, переместятся в вертикальной плоскости из положения «а» в положение «б» на отрезок величиной Δhi (фиг. 2):

Δhi=hi-1 - hi,

где hi-1 и hi - расстояния между центром колеса 3 и днищем транспортного средства в положениях «а» и «б», соответственно.

В результате на выходе датчика линейного перемещения 5 появится сигнал Ui, пропорциональный величине Δhi,

Ui=k⋅Δhi,

где k - коэффициент передачи датчика линейного перемещения 5.

Сигнал Ui подается на первый вход вычислительного устройства 8. На второй вход вычислительного устройства подается сигнал с выхода механического датчика пути 7, который содержит информацию Si о длине i-го отрезка пути.

В вычислительном устройстве 8 рассчитывается горизонтальная составляющая SГi пройденного пути. Вычисления осуществляются по следующим формулам:

где βi - величина угла наклона i-го отрезка пути относительно плоскости горизонта.

С выхода курсовой системы 9 на вход вычислительного устройства 8 поступает также информация о величине αi дирекционного угла продольной оси транспортного средства. По полученным значениям SГi и αi в вычислительном устройстве вычисляются плоские прямоугольные координаты Xi и Yi текущего местоположения транспортного средства:

где Хисх и Yисх - прямоугольные координаты исходного пункта маршрута.

С выхода вычислительного устройства 8 сигналы, несущие информацию о дирекционном угле αi транспортного средства и прямоугольных координатах Xi и Yi его текущего местоположения, поступают на входы курсоуказателя 10 и планшета индикаторного 11, соответственно.

Таким образом, в предложенной одометрической системе навигации обеспечивается компенсация погрешности измерения горизонтальной составляющей пройденного пути наземным транспортным средством, обусловленной микрорельефом местности. Следовательно, в предложенном устройстве точность измерения горизонтальной составляющей пройденного пути не будет зависеть от такого фактора, как микрорельеф местности, что в конечном итоге приводит к повышению точности определения прямоугольных координат местоположения транспортного средства.

Использованные источники

- Полевой В.А. «Работа с трехкоординатным топопривязчиком». М.: «Недра», 1978 г., стр. 25;

- Псарёв А.А. и др. «Военная топография». М.: «Воениздат», 1986 г., стр. 267 (прототип).

Одометрическая система навигации, содержащая механический датчик пути, курсовую систему, вычислительное устройство, курсоуказатель и планшет индикаторный, отличающаяся от аналогов тем, что в ее состав включается датчик дополнительного линейного перемещения, корпус которого прикреплен к кузову транспортного средства, ползунок датчика жестко соединен с валом колеса транспортного средства, выход датчика линейного перемещения соединен с входом вычислительного устройства, что, в свою очередь, позволяет повысить точность измерения горизонтальной составляющей пройденного пути за счет исключения погрешности, обусловленной микрорельефом местности.



 

Похожие патенты:

Настоящее изобретение касается авиационного приборостроения, а именно электронного оборудования кабины пилота, используемого для определения пространственного положения летательного аппарата.

Изобретение относится к области навигационного приборостроения и может найти применение в системах навигации автотранспортных средств. Технический результат – расширение функциональных возможностей на основе повышения качества навигации транспортного средства и улучшения информационного обслуживания пользователей, использующих навигационные программы и устройства.

Группа изобретений относится к способу управления транспортным средством в системе управления движением транспортных средств и транспортному средству. Для управления транспортным средством принимают проекцию от генератора сетки, генерируют навигационный выходной сигнал и передают его в систему управления движением транспортных средств, от которой принимают план управления движением, выполняют план движения.

Изобретение относится к области измерительной техники и, в частности, относится к способу обновления углового положения сельскохозяйственной машины, основанному на девятиосевом датчике на основе МЭМС.

Изобретение относится к области авиационного приборостроения и может быть применено в интегрированных системах, использующих информацию с зашумленным сигналом, в частности от спутниковой навигационной системы (СНС), и обеспечивающих целостность навигационной информации системы.
Изобретение относится к области навигационного приборостроения и может найти применение в системах измерения и индикации пилотирования летательных аппаратов (ЛА) в случае отказа основных пилотажно-навигационных систем.

Изобретение относится к области авиационного приборостроения и может быть применено в интегрированных системах, использующих информацию с зашумленным сигналом, в частности, от спутниковой навигационной системы (СНС) и обеспечивающих целостность навигационной информации системы.

Изобретение относится к оборонной технике, в частности к методам проведения испытаний навигационной аппаратуры, устанавливаемой на шасси наземных транспортных средств.

Данное техническое решение относится, в общем, к вычислительным системам и способам, а в частности к системам и способам навигации подвижных объектов с использованием трехмерных датчиков.

Изобретение относится к области навигации и топопривязки, в частности к способам спутниковой навигации и контроля качества навигационных полей космических навигационных систем ГЛОНАСС и GPS, формирования корректирующей информации и анализа ее качества.

Изобретение относится к способу управления движением летательного аппарата. Для управления движением летательного аппарата производят предполетную подготовку с использованием математической модели летательного аппарата и формируют программную траекторию движения летательного аппарата по опорным точкам определенным образом, в процессе полета восстанавливают траекторию движения летательного аппарата плавным переходом между опорными точками, управление движением летательного аппарата в полете осуществляют при помощи метода пропорционального сближения, при необходимости, с учетом динамической коррекции программной траектории движения летательного аппарата определенным образом. Обеспечивается повышение точности вычисления траектории летательного аппарата средствами бортовой системы управления. 1 ил.

Изобретение относится к технологии оценки условий дорожного трафика. Технический результат заключается в повышении точности определения дорожного трафика. Предлагается способ определения параметра ошибки в расчете пользовательского трафика, параметр связан с расчетными условиями дорожного трафика, которые предоставляются в электронном виде пользователю электронного устройства с помощью навигационного приложения. Способ включает этапы: в первый момент времени, получение электронным устройством от сервера рассчитанного времени поездки для дорожного сегмента; в ответ на то, что устройство приближается к дорожному сегменту, отображение созданных приложением условий дорожного трафика для дорожного сегмента; в ответ на то, что устройство покидает дорожный сегмент, определение сведений устройства, которые указывают на ожидаемое время поездки пользователем при приближении устройства к дорожному сегменту и фактическое время поездки; и передача от устройства сведений на сервер для настройки алгоритма прогнозирования трафика на основе параметра ошибки в расчете пользовательского трафика. 3 н. и 16 з.п. ф-лы, 11 ил.

Группа изобретений относится к системам управления движением транспортных средств и способу генерирования информации плана движения транспортных средств в зоне движения или парковки. Система в первом варианте исполнения содержит набор генераторов сетки в зоне движения или парковки, транспортное средство с детекторным модулем, модуль данных и модуль управления. Система во втором варианте содержит линию связи, модуль управления, модуль данных, модуль генератора плана. Для генерирования информации плана для транспортных средств проецируют в пространство генераторами сетки набор линий, задающих навигационную сетку определенным образом, обнаруживают с помощью детекторного модуля местоположение транспортного средства внутри сетки, генерируют информацию плана, включающего информацию для управления движением или удержания транспортного средства, информацию о транспортном средстве и информацию, относящуюся к физическим характеристикам зоны движения или парковки. Обеспечивается автоматизация и точное руководство для управления движением транспортных средств в зоне, имеющей набор транспортных средств. 3 н. и 17 з.п. ф-лы, 7 ил.
Наверх