Устройство для контроля пространственных перемещений

Изобретение относится к области контроля перемещений объектов и касается устройства для контроля пространственных перемещений. Устройство включает в себя корпус, источник и приемники света. Источник света является многоточечным, жестко связан с исследуемым объектом и находится в пространстве, ограниченном цилиндрическим корпусом. Сигналы многоточечного излучателя регистрируются матрицей фотоприемников, расположенных на боковой поверхности цилиндрического корпуса и обращенных чувствительными поверхностями внутрь корпуса. По тому, какой набор фотоприемников в данный момент регистрирует сигналы излучателя, делается вывод о текущем положении исследуемого объекта, его крене и перемещении от предыдущего положения. Анализ производится с использованием технологии вывода на основе прецедентов. Технический результат заключается в обеспечении возможности определения параметров движения по трем осям, повышении быстродействия, долговечности и надежности устройства. 3 ил.

 

Изобретение относится к устройствам для контроля крена объекта и перемещения в пространстве с привязкой по трем координатам. С помощью описанного далее устройства также возможна фиксация точек перемещения объекта в пространстве в течение определенного промежутка времени для контроля траектории его перемещения, что может оказаться полезным для исследования влияния на его движение различных внешних воздействий и предотвращения аварийных ситуаций.

Известно устройство, измеряющее углы наклона объекта (Пат. 2234058, МПК G01C 9/00, опубл. 10.08.2004 - Устройство для определения углов наклона объекта), которое может быть использовано для определения углов наклона строительных механизмов и машин, а также при эксплуатации промышленных зданий и сооружений. Устройство содержит сферический корпус, заполненный жидкостью, с помещенным в него шаром-замыкателем и контактными поверхностями. Контактные поверхности выполнены в виде системы переплетенных между собой разомкнутых проводников, закрепленных вертикально и горизонтально на внутренней поверхности сферического корпуса.

Недостатком данного устройства является невозможность оценки угла наклона объекта только по трем направлениям и невозможность использования датчика при низких температурах.

Известно устройство для контроля линейного или углового перемещения оборудования или механизма грузоподъемной машины (Пат. 2403204, МПК G01B 7/00, опубл. 10.11.2010 - Устройство для контроля линейного или углового перемещения оборудования или механизма грузоподъемной машины), в котором осуществляется преобразование перемещения контролируемого объекта в угловое перемещение вала оптического энкодера. Это устройство позволяет с учетом полученной величины отклонения регулировать работу привода грузоподъемной машины.

Недостатком данного устройства является низкое быстродействие и аппаратная избыточность.

Известно устройство для измерения внешнего воздействия (Пат. US 20070097362 A1, опубл. 03.05.2007 - Optical displacement sensor structure with one light source, and external force detecting device incorporating the same), использующее один излучатель света и оптоволокно с тремя световодами, направляющими свет от излучателя на три оптических сенсора. Каждый сенсор содержит четыре фотодиода. При движении объекта направление света из каждого световода меняется, величина светового потока фиксируется фотодиодами.

Недостатком данного устройства является низкая надежность и ограниченный диапазон измерения.

Наиболее близким аналогом является устройство для контроля перемещений, определяющее крен объекта (Пат. 2150086, МПК G01C 9/00, опубл. 27.05.2000 - Устройство для контроля перемещений) - прототип. Данное устройство представлено двумя блоками датчиков, выполненных в виде маятника с излучателем света, а также шкалы фотоприемников, расположенной вдоль траектории движения маятника. При движении маятника сигнал излучателя света регистрируется одним из фотоприемников. По тому, какой именно фотоприемник регистрирует сигнал излучателя, определяется положение маятника (угол его отклонения от вертикального положения) в конкретный момент времени.

Это устройство отличается более высоким быстродействием и долговечностью в использовании, оно может быть применено в исследованиях стабилизации неустойчивых объектов. Недостатком данного устройства является невозможность измерения пространственных характеристик движения объекта, т.к. измеряются только характеристики движения маятника по двум координатам.

Задачей, на решение которой направлено заявляемое техническое решение, является обеспечение определения параметров движения исследуемого объекта (крен, скорость, перемещение от предыдущего положения и др.) в пространстве.

Усовершенствование системы состоит в том, что излучатель света становится многоточечным и жестко соединяется с исследуемым объектом металлической штангой, а блок приемников сигнала располагается на боковой поверхности цилиндрического корпуса и представлен матрицей фотоприемников, чувствительные поверхности которых обращены внутрь корпуса.

Технический результат - определение параметров движения объекта по трем осям, а также повышение быстродействия, долговечности и надежности устройства. Достигается данный результат тем, что в конструкции устройства предусмотрены многоточечный излучатель света, жестко прикрепленный к исследуемому объекту, и блок приемников сигнала, расположенный на боковой поверхности цилиндрического корпуса и выполненный в виде матрицы фотоприемников, чувствительные поверхности которых обращены внутрь корпуса.

Изобретение дополняется чертежами, поясняющими структуру устройства: фиг. 1 - схема устройства, фиг. 2 - схема матрицы фотоприемников, фиг. 3 - функциональная схема системы.

Предлагаемая схема устройства приведена на фиг. 1. Элементами устройства являются многоточечный излучатель света и блок приемников сигнала. К исследуемому объекту 1 через жесткий подвес 2 прикреплен многоточечный излучатель света 3. Точка соединения подвеса с излучателем обозначена цифрой 4. Многоточечный излучатель состоит из четырех излучателей света 5 с узкой диаграммой направленности (например, лазерных) и находится в пространстве, ограниченном цилиндрическим корпусом 6. Этот корпус содержит блок приемников сигнала - матрицу фотоприемников, расположенную на боковой поверхности цилиндрического корпуса, причем эта матрица чувствительной поверхностью обращена внутрь корпуса. Отсутствие матрицы фотоприемников на верхней грани корпуса объясняется тем, что сквозь нее проходит жесткий подвес, соединяющий исследуемый объект с многоточечным излучателем света, а на нижней грани - тем, что по координатам двух осей можно однозначно определить перемещение объекта.

Схема расположения фотоприемников на боковой поверхности корпуса представлена на фиг. 2. Ряды фотоприемников, расположенные на внутренней боковой поверхности цилиндрического корпуса, чередуются с шагом h в вертикальном и горизонтальном направлениях. Количество фотоприемников K, обозначенных V11…VDNM, зависит от числа строк N и столбцов М матрицы. Общее число фотоприемников 7 в устройстве равно К. Оно зависит от необходимой точности измерений и вычисляется по формуле:

K=N⋅М,

где N - количество столбцов матрицы фотоприемников, М - количество строк матрицы фотоприемников.

Таким образом, данное устройство отличается наличием многоточечного излучателя света, а также тем, что блок приемников сигнала выполнен в виде матрицы фотоприемников, расположенных на внутренней боковой поверхности цилиндрического корпуса.

Данное устройство может быть применено в системе контроля перемещений, описание которой приведено далее.

Составляющие системы контроля перемещений: устройство для контроля пространственных перемещений, содержащее исследуемый объект с многоточечным излучателем света, блок приемников сигнала; два мультиплексора сигналов и микропроцессор (например, микроконтроллер Intel 8051 АН с внешней перезаписываемой памятью).

Рассмотрим работу системы. Ее функциональная схема представлена на фиг. 3. После включения питания системы происходит ее инициализация: запись начальных настроек в микропроцессор, сброс значений фотоприемников, включение излучателей света, установка начального положения исследуемого объекта. Далее системой начинается непрерывный опрос блока приемников сигнала. Сигналы с фотоприемников VD11…VDNM (фиг. 2) поступают на устройства преобразования величины тока в напряжение. Каждое такое устройство преобразует фототок одного фотоприемника в выходное напряжение Uout и содержит фотодиод VD, резисторы R1 и R2 и операционный усилитель DA. После этого сигналы с устройств преобразования по каналам 1..N (с горизонтальных рядов матрицы) и 1..М (с вертикальных рядов матрицы) поступают на мультиплексоры MSH и MSV, в которых сигналы с фотоприемников в горизонтальных и вертикальных рядах отдельно обрабатываются и передаются в микропроцессор.

На входы A1-AK и A1-AL мультиплексоров MSH и MSV по линиям адреса поступают с нулевого и второго портов микропроцессора адреса каналов, выбранных для передачи данных. С выходов OUT мультиплексоров на входы Р1.0 и Р1.1 микропроцессора по линиям данных поступают сигналы с фотоприемников и фиксируются во внешней памяти. Далее с выходов Р1.2-P1.6 микропроцессора по адресным линиям на входы А0-А4 EPROM поступают адреса ячеек, выбранных для записи данных о текущем состоянии объекта, а через линии третьего порта микропроцессора Р3.03.7 производится обмен данными с EPROM. Выход P1,7 управления записью-чтением микропроцессора соединяется с соответствующим выводом WR/RD EPROM.

Программа, хранящаяся во внутреннем ПЗУ микропроцессора, обрабатывает сигналы, поступающие с матрицы фотоприемников, и устанавливает набор фотоприемников, на которых в данный момент регистрируются сигналы излучателей света. Для точного определения перемещения многоточечного излучателя и, следовательно, исследуемого объекта применяется технология Case-Based Reasoning (CBR), или вывода на основе прецедентов. Так, прецедент можно представить в виде:

CASE=(VDi, VDj, VDk, VDl, R),

где VDi, VDj, VDk, VDl - набор фотоприемников, зарегистрировавших сигнал от первого, второго, третьего и четвертого излучателей света соответственно; R - решения (управляющие рекомендации).

Библиотека прецедентов (БП), содержащая всевозможные наборы сигналов с фотоприемников, а также соответствующие решения, формируется до ввода системы в эксплуатацию и записывается во внешнюю память.

Во время работы системы выполняется определение сходства данного прецедента с хранимыми в БП. При нахождении однозначного соответствия устанавливаются координаты положения объекта, его крена, скорости и величины перемещения от предыдущего положения и др.

Устройство для контроля пространственных перемещений, содержащее корпус, источник и приемники света, отличающееся тем, что источник света является многоточечным, жестко связан с исследуемым объектом и находится в пространстве, ограниченном цилиндрическим корпусом, сигналы многоточечного излучателя регистрируются матрицей фотоприемников, расположенных на боковой поверхности цилиндрического корпуса и обращенных чувствительными поверхностями внутрь корпуса; по тому, какой набор фотоприемников в данный момент регистрирует сигналы излучателя, делается вывод о текущем положении исследуемого объекта, а также о его крене, перемещении от предыдущего положения с использованием технологии CBR.



 

Похожие патенты:

Изобретение относится к технике оптических измерений и может быть использовано для измерения параметров физических полей (температура) с помощью оптических датчиков.

Изобретение относится к оптико-электронному приборостроению и может быть использовано в конструкциях волоконно-оптических преобразователей физических величин, предусматривающих интерференционную регистрацию измеряемого сигнала.

Изобретение относится к оптической измерительной технике и может быть использовано для измерения параметров физических полей. Согласно способу генерируют пару сигналов близкой амплитуды со средней частотой, соответствующей определенной частоте полосы пропускания оптического датчика при заданном значении параметра физического поля и разностной частотой, достаточно узкой, для того чтобы оба сигнала попали в указанную полосу пропускания.

Изобретение относится к оптической измерительной технике и может быть использовано для измерения параметров физических полей. .

Изобретение относится к волоконно-оптической измерительной технике и может быть использовано для измерения давления, температуры, деформации, перемещения. .

Изобретение относится к области измерений, а именно к измеряющим устройствам, в которых выходной сигнал от датчика света передается с использованием оптических средств, и предназначено для регистрации световых изменений, которые обнаруживаются, например, на вращающихся или колеблющихся предметах (метка на диске электросчетчика), малогабаритных световых предметах (светодиодах).

Изобретение относится к контрольно-измерительной технике и может быть использовано в устройствах для регулировки и поверки индукционных счетчиков электроэнергии, а также для дистанционного измерения потребления электроэнергии.

Изобретение относится к преобразовательной технике, в частности к датчикам наличия предметов и объектов в определенной зоне пространства, например наличия металла в определенном сечении клети прокатного стана, наличия объекта в определенном месте технологического процесса.

Изобретение относится к измерению расхода жиркости на транспортных средствах. .

Изобретение относится к области прецизионной контрольно-измерительной техники. Способ измерения наноперемещений заключается в том, что облучают объект лазерным излучением, регистрируют отраженное от объекта излучение, интерферирующее в лазере, встроенным фотодетектором.

Группа изобретений относится к способу и системе для определения расстояния от оси прицепа до дышла. Система для оценки расстояния от оси прицепа до дышла включает в себя процессор, выполненный с возможностью принимать изображение прицепа, идентифицировать на изображении ось прицепа и конец дышла, принимать изображение шины, содержащей маркировку величины диаметра колеса, определять по маркировке диаметр колеса и сопоставлять его с диаметром колеса на изображении прицепа, после чего рассчитывать расстояние от оси до конечной части дышла, используя полученное значение диаметра.

Система управления направлением движения транспортного средства включает в себя два отдельных устройства привязки; лазерное сканирующее устройство, выполненное с возможностью испускать сигналы лазерного луча и сканировать секторную область лазерным лучом, с тем чтобы измерять расстояние по прямой соединительной линии для соединения лазерного сканирующего устройства с любым из по меньшей мере двух отдельных устройств привязки и угол между соответствующей прямой соединительной линией и корпусом транспортного средства у транспортного средства или угол между прямыми соединительными линиями; процессор, выполненный с возможностью обрабатывать и сохранять данные и определять, является или нет ориентация корпуса транспортного средства в реальном времени отклоняющейся от начальной ориентации корпуса транспортного средства сразу после того, как система начинает работать, в соответствии с результатами, считанными лазерным сканирующим устройством.

Изобретение относится к транспорту углеводородов в нефтяной и газовой промышленности и может быть использовано при эксплуатации трубопроводов, расположенных в местах с возможными оползневыми явлениями.

Изобретение относится к неразрушающему контролю заготовок. Способ контроля заготовки включает сохранение данных модели, связанных с заготовкой, в систему контроля и определение относительного положения измерителя удаленности по отношению к заготовке.

Изобретение относится к области плазменной техники. Предложен способ измерения зазора в плазменной струе между плазмотроном и заготовкой в производстве металлических порошков и гранул.

Изобретение относится к области для определения положения механических элементов относительно друг друга. Устройство для определения положения первого механического элемента и второго механического элемента относительно друг друга содержит первый измерительный модуль, устанавливаемый на первом механическом элементе, и второй измерительный модуль, устанавливаемый на втором механическом элементе, а также блок обработки результатов.

Изобретение относится к точной механике и измерительной технике и может быть использовано в оборудовании для прецизионного линейного перемещения объектов. Заявленное устройство для линейного перемещения объекта с нанометровой точностью в большом диапазоне возможных перемещений включает опорную (неподвижную) часть и подвижную часть с установленным на ней объектом, привод, перемещающий подвижную часть Кроме того, заявленное устройство содержит источник монохроматического излучения, формирующий точечный источник излучения, совмещенный с передним фокусом оптической системы, формирующей параллельный пучок света с оптической осью, параллельной направлению перемещения.

Способ измерения перемещений заключается в формировании на поверхности квадрантного фотоприемника двух световых потоков, преобразовании оптических сигналов в электрические и определении координат оптических сигналов по электрическим.

Изобретение касается прецизионного датчика расстояния. Особенностью указанного датчика является то, что приемная схема выполнена двухканальной и состоит из оптической системы, включающей две ромб-призмы и два отклоняющих клина, и приемной проекционной системы, включающей цилиндрическую линзу и сферический объектив, а в качестве фотодетектора использована двухкоординатная ПЗС-матрица, выход которой подключен к персональному компьютеру или контроллеру.
Наверх