Способ получения нанокапсул этилнитрата в альгинате натрия

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул этилнитрата в оболочке из альгината натрия. Способ характеризуется тем, что этилнитрат медленно добавляют в суспензию альгината натрия в гексане в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1200 об/мин, при этом массовое соотношение ядро:оболочка при пересчете на сухое вещество составляет 1:3, или 1:5, или 1:2, далее приливают диэтиловый эфир, полученную суспензию отфильтровывают и сушат при комнатной температуре. Способ обеспечивает упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул. 3 пр.

 

Изобретение относится к области нанотехнологии.

Ранее были известны способы получения микрокапсул солей.

В пат. 2359662 МПК А61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00 опубликован 27.06.2009 Российская Федерация предложен способ получения микрокапсул хлорида натрия с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.

Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин).

Наиболее близким методом является способ, предложенный в пат. 2134967 МПК A01N 53/00, A01N 25/28 опубликован 27.08.1999 Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.

Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.

Техническая задача - упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).

Решение технической задачи достигается способом получения нанокапсул этилнитрата, отличающийся тем, что в качестве оболочки нанокапсул используется альгинат натрия при получении наночастиц методом осаждения нерастворителем с применением диэтилового эфира в качестве осадителя.

Отличительной особенностью предлагаемого метода является получение нанокапсул методом осаждения нерастворителем с использованием диэтилового эфира в качестве осадителя, а также использование альгината натрия в качестве оболочки частиц.

Результатом предлагаемого метода являются получение нанокапсул этилнитрата в оболочке из альгината натрия.

ПРИМЕР 1 Получение нанокапсул этилнитрата в альгинате натрия, соотношение ядро : оболочка 1:3

1 г этилнитрата медленно прибавляют в суспензию альгинате натрия в гесане, содержащий указанного 3 г полимера в присутствии 0,01 г препарата Е472с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота, как трехосновная, может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием) в качестве поверхностно-активного вещества при перемешивании 1200 об/мин. Далее приливают 5 мл диэтилового эфира. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 4 г порошка. Выход составил 100%.

ПРИМЕР 2 Получение нанокапсул этилнитрата в альгинате натрия, соотношение ядро : оболочка 1:5.

1 г этилнитрата медленно добавляют в суспензию альгината натрия в гесане, содержащий указанного 5 г полимера в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1200 об/мин. Далее приливают 5 мл диэтилового эфира. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 6 г порошка. Выход составил 100%.

ПРИМЕР 3 Получение нанокапсул этилнитрата в альгинате натрия, соотношение ядро : оболочка 1:2

1 г этилнитрата медленно добавляют в суспензию альгината натрия в гексане, содержащий указанного 2 г полимера в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1200 об/мин. Далее приливают 5 мл диэтилового эфира. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 4 г порошка. Выход составил 100%.

Этилнитрат обладает взрывчатыми свойствами. Поэтому работать с ним необходимо с предосторожностями.

Способ получения нанокапсул этилнитрата, характеризующийся тем, что в качестве оболочки нанокапсул используется альгинат натрия, а в качестве ядра - этилнитрат, при этом этилнитрат медленно добавляют в суспензию альгината натрия в гексане в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1200 об/мин, при этом массовое соотношение ядро:оболочка при пересчете на сухое вещество составляет 1:3, или 1:5, или 1:2, далее приливают диэтиловый эфир, полученную суспензию отфильтровывают и сушат при комнатной температуре.



 

Похожие патенты:

Изобретение относится к глинопластилиновой композиции для обучения, игры, лепки в качестве альтернативы традиционным видам глины и пластилина. Глинопластилин представляет собой смесь парафина, церезина, минерального масла и пигментов, дополнительно содержит порошкообразную гончарную глину (далее «Глина»), на поверхности которой электрохимически абсорбировано наноразмерное серебро (средний размер частиц не превышает 50 нм) для придания композиции противомикробного эффекта при следующем соотношении компонентов, % масс.: парафин - 5-26, церезин - 3-27, минеральное масло - 5-7, порошковая глина с абсорбированным наносеребром - 58-62, пигмент - 1-3, вода - 5-11,5.

Использование: для изготовления высокочувствительных приемников электромагнитного излучения терагерцевого диапазона. Сущность изобретения заключается в том, что массив чувствительных элементов формируется в процессе селективного травления однородной сетки УНТ с использованием литографической маски в виде массива прямоугольников размером 8*4 мкм2, сформированной в процессе фотолитографии.

Изобретение относится к агрегированным частицам для ингаляции, содержащим нанодисперсные частицы лекарственного средства умеклидиния бромида, вилантерола трифенатата и флутиказона фуроата.

Изобретение относится к наноструктурированным материалам с выраженной сегнетоэлектрической активностью с требуемыми характеристиками, используемым в качестве функциональных материалов в современной микро- и наноэлектронике.

Изобретение относится к нанотехнологии. Синтез эндоэдральных фуллеренов проводят в водоохлаждаемой металлической герметичной камере в плазме высокочастотной дуги с использованием переменного тока при атмосферном давлении.

Изобретение может быть использовано в химической технологии. Для приготовления порошкообразных образцов η-фазы состава TiO2-х×nH2O, где n=0,9-2,0, с интеркаляцией поли-N-винилкапролактама (ПВК) в структуру η-фазы осуществляют следующие стадии.

Изобретение относится к неорганической химии и нанотехнологиям и может быть использовано для формирования нанорельефа в микроканале, в качестве гидрофильного покрытия, подложки для катализаторов.

Использование: для изготовления сенсорных датчиков. Сущность изобретения заключается в том, что способ модификации включает пропитку образца фотонного кристалла и отжиг на воздухе.

Изобретение относится к электронике и нанотехнологии и может быть использовано в 2D-печати. Сначала получают графеновые частицы электрохимическим расслоением графита, характеризующегося массой чешуек около 10 мг, в жидкой фазе с использованием в качестве электролита водного 0,00005-0,05 М раствора (NH4)2S2O8, в течение 10 мин и менее, при напряжении не более 15 В и подаче на графитовый электрод положительного напряжения.

Изобретение относится к области создания новых структурированных гибридных наноматериалов на основе электроактивных полимеров с системой сопряжения и одностенных углеродных нанотрубок (ОУНТ) и может быть использовано в качестве носителей для катализаторов, в том числе в топливных элементах с полимерной мембраной, для создания микроэлектромеханических систем, тонкопленочных транзисторов, нанодиодов, наноэлектропроводов, модулей памяти, электрохимических источников тока, перезаряжаемых батарей, суперконденсаторов, сенсоров и биосенсоров, солнечных батарей, дисплеев.
Изобретение относится в области нанотехнологии, медицины и пищевой промышленности, а именно к способу получения нанокапсул. Способ получения нанокапсул сухого экстракта алоэ, при этом в качестве оболочки нанокапсул используется альгинат натрия, в качестве ядра - сухой экстракт алоэ, при этом сухой экстракт алоэ добавляют в суспензию альгината натрия в бутаноле в присутствии 0,01 г сложного Е472с в качестве поверхностно-активного вещества при перемешивании 1100 об/мин, далее приливают 6 мл диэтилового эфира, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро:оболочка составляет 1:1, 1:2 или 1:3.
Изобретение относится к области нанотехнологий и ветеринарной медицине. Способ получения нанокапсул ветеринарного препарата биопага-Д характеризуется тем, что в качестве оболочки нанокапсул используется конжаковая камедь, а в качестве ядра - порошок биопага-Д, при этом к суспензии конжаковой камеди в бутаноле прибавляют 0,01 г Е472с в качестве поверхностно-активного вещества, затем полученную смесь перемешивают на магнитной мешалке, после чего добавляют порошок биопага-Д, затем добавляют 5 мл хлороформа, далее полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро : оболочка составляет в нанокапсулах 1:1, или 1:3, или 1:5.
Изобретение относится к способу получения нанокапсул стрептоцида в оболочке из ксантановой камеди. Способ получения нанокапсул стрептоцида характеризуется тем, что в качестве оболочки нанокапсул используется ксантановая камедь, при этом стрептоцид порциями добавляют в суспензию 0,5 г или 1,0 г ксантановой камеди в бутаноле, содержащую 0,01 г препарата Е472 с в качестве поверхностно-активного вещества, при массовом соотношении ядро:оболочка 1:1 или 1:2, смесь перемешивают, затем добавляют 5 мл ацетонитрила, полученную суспензию нанокапсул отфильтровывают и сушат.
Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул биопага-Д в оболочке из конжаковой камеди.
Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул препарата биопага-Д. Способ характеризуется тем, что в качестве оболочки нанокапсул используется геллановая камедь, при этом, к суспензии геллановой камеди в метаноле прибавляют 0,01 г Е472с в качестве поверхностно-активного вещества, затем полученную смесь перемешивают на магнитной мешалке, после чего добавляют 1 г порошка биопага-Д, затем добавляют 5 мл диэтилового эфира, далее полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро : оболочка составляет в нанокапсулах 1:1, или 1:3, или 1:5.

Группа изобретений относится к липидным наночастицам и их применению в качестве фармацевтических композиций для ранозаживления. Раскрыта липидная наночастица для ранозаживления, включающая эпидермальный фактор роста (EGF), твердый при комнатной температуре липид, выбранный из группы, содержащей глицерилпальмитостеарат, глицерилмоностеарат и глицерилбегенат и их смеси, жидкий при комнатной температуре липид, выбранный из группы, содержащей триглицерид каприловой кислоты и каприновой кислоты, соевое масло, изопропилмиристат, касторовое масло и их смеси, и неионное поверхностно-активное вещество, выбранное из группы, содержащей сложные эфиры сорбитана, полиэтоксилированные сложные эфиры сорбитана, полиэтилен-полипропилен гликоль и их смеси.

Группа изобретений относится к липидным наночастицам и их применению в качестве фармацевтических композиций для ранозаживления. Раскрыта липидная наночастица для ранозаживления, включающая эпидермальный фактор роста (EGF), твердый при комнатной температуре липид, выбранный из группы, содержащей глицерилпальмитостеарат, глицерилмоностеарат и глицерилбегенат и их смеси, жидкий при комнатной температуре липид, выбранный из группы, содержащей триглицерид каприловой кислоты и каприновой кислоты, соевое масло, изопропилмиристат, касторовое масло и их смеси, и неионное поверхностно-активное вещество, выбранное из группы, содержащей сложные эфиры сорбитана, полиэтоксилированные сложные эфиры сорбитана, полиэтилен-полипропилен гликоль и их смеси.
Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул стрептоцида в оболочке из каппа-каррагинана.
Изобретение относится в области нанотехнологии и пищевой промышленности. Способ получения нанокапсул розмарина характеризуется тем, что в качестве оболочки нанокапсул используют каррагинан, а в качестве ядра - розмарин, при этом розмарин добавляют в суспензию каррагинана в бутаноле в присутствии 0,01 г Е472с, затем перемешивают при 1300 об/с, после приливают 3 мл бензола, после чего полученную суспензию отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро:оболочка составляет 1:1 или 1:3.
Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул солей лантаноидов в оболочке из каррагинана.

Группа изобретений касается стабилизации биологически активного материала. Предложены: сухая композиция в аморфном стеклообразном состоянии для стабилизации биологически активного материала, содержащая указанный биологически активный материал, от 10% до 50% по меньшей мере одного дисахарида, от более чем 10% до 80% по меньшей мере одного олигосахарида, от 0,1% до 10% по меньшей мере одного полисахарида, от 0,5% до 40% по меньшей мере одного гидролизованного белка и по меньшей мере одну соль карбоновой кислоты в количестве 0,5-20%, при этом проценты указаны относительно общей массы композиции, при этом указанный биологически активный материал представляет собой: живую бактерию, гриб, фаг, фермент, белок или пестицид (варианты).
Наверх