Многокоординатный цифровой интерполятор



Многокоординатный цифровой интерполятор
Многокоординатный цифровой интерполятор
Многокоординатный цифровой интерполятор
Многокоординатный цифровой интерполятор
Многокоординатный цифровой интерполятор
Многокоординатный цифровой интерполятор
Многокоординатный цифровой интерполятор
Многокоординатный цифровой интерполятор
Многокоординатный цифровой интерполятор
G05B19/00 - Системы программного управления (специальное применение см. в соответствующих подклассах, например A47L 15/46; часы с присоединенными или встроенными приспособлениями, управляющими какими-либо устройствами в течение заданных интервалов времени G04C 23/00; маркировка или считывание носителей записи с цифровой информацией G06K; запоминающие устройства G11; реле времени или переключатели с программным управлением во времени и с автоматическим окончанием работы по завершению программы H01H 43/00)

Владельцы патента RU 2667658:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") (RU)

Изобретение относится к управлению производственным процессом. Многокоординатный цифровой интерполятор содержит блок программы, счетчик приращений, блок задания скорости, одноразрядные сумматоры и блоки двухкоординатной интерполяции. Дополнительно интерполятор содержит регистры для хранения начальных значений оценочной функции, связанных по входу с блоком программ, а по выходу - с одноименными блоками двухкоординатной интерполяции соответственно. Повышается точность цифровой интерполяции. 1 ил.

 

Изобретение относится к технике автоматизированного управления производственными процессами, а именно к устройствам для использования в системах числового программного управления станками.

Известен линейный цифровой интерполятор [А.с. 920636, СССР, 1982 г.], содержащий сдвиговые регистры координатных приращений, блоки совпадения, сумматор, блок анализа знака оценочной функции, блок анализа знака разности координатных приращений. Их взаимные связи обеспечивают нахождение начального значения оценочной функции, равного

где Б и М - большее и меньшее координатные приращения соответственно.

Это обеспечивает минимальную погрешность линейной цифровой интерполяции на уровне не более 0,5 шага интерполяции.

Недостатком этого интерполятора является отсутствие возможности вычисления линейной цифровой интерполяции в многомерном (многокоординатном) пространстве, выше двухкоординатного.

Наиболее близким к заявляемому интерполятору является многокоординатный цифровой интерполятор [А.с. 966665 СССР, 1982 г.]. Он содержит блок программы и счетчик приращений, счетным входом соединенный с выходом блока задания скорости, содержит (n-1)- одноразрядных сумматоров и (n-1) блоков двухкоординатной интерполяции, причем каждый i-ый одноразрядный сумматор соединен первым входом с выходом i-ой координаты блока программы и входом первой координаты i-го блока двукоординатной интерполяции, вторым входом - с входом второй координаты каждого i-го блока двухкоординатной интерполяции и выходом (i+1)-гo одноразрядного сумматора, при этом выход первого одноразрядного сумматора соединен с установочным входом счетчика приращений, а второй вход (n-1)-гo одноразрядного сумматора подключен к выходу n-ой координаты блока программы, каждый i-ый блок двухкоординатной интерполяции соединен импульсным входом с выходом второй координаты (i-1)-гo блока двухкоординатной интерполяции, а выходом первой координаты - с выходом i-ой координаты устройства, причем импульсный вход первого блока двухкоординатной интерполяции подключен к выходу блока задания скорости, а выход второй координаты (n-1)-гo блока двухкоординатной интерполяции - к выходу n-ой координаты устройства.

Его недостатком является повышенная методическая абсолютная погрешность, равная одному шагу интерполяции. Она вызвана неучетом начального значения оценочной функции по формуле (1), а полагаемой в прототипе, равной нулю.

Задача изобретения - совершенствование многокоординатного цифрового интерполятора.

Технический результат - обеспечение максимально возможной точности цифровой интерполяции (погрешность менее 0,5 шага интерполяции) прямой линии в n - координатном пространстве (n>2).

Технический результат достигается за счет того, что в многокоординатный цифровой интерполятор, содержащий блок программы и счетчик приращений, счетным входом соединенный с выходом блока задания скорости, (n-1) одноразрядных сумматоров и (n-1) блоков двухкоординатной интерполяции, причем каждый i-й одноразрядный сумматор соединен первым входом с выходом i-й координаты блока программы и входом первой координаты i-го блока двухкоординатной интерполяции, вторым входом - с входом второй координаты каждого i-го блока двухкоординатной интерполяции и выходом (i+1)-гo одноразрядного сумматора дополнительно введены (n-1) - регистров, хранящих начальные значения оценочных функций и связанных по входу с блоком программы, а по выходу - с (n-1) одноименными блоками двухкоординатной интерполяции, соответственно. При этом выход первого одноразрядного сумматора соединен с установочным входом счетчика приращений, а второй вход (n-1)-гo одноразрядного сумматора подключен к выходу n-й координаты блока программы, каждый i-й блок двухкоординатной интерполяции соединен импульсным входом с выходом второй координаты (i-1)-гo блока двухкоординатной интерполяции, а выходом первой координаты - с выходом i-й координаты устройства, причем импульсный вход первого блока двухкоординатной интерполяции подключен к выходу блока задания скорости, а выход второй координаты (n-1)-то блока двухкоординатной интерполяции - к выходу n-й координаты устройства.

Введение дополнительно (n-1) регистров для хранения начальных значений оценочных функций в многокоординатный интерполятор позволило повысить точность интерполяции за счет учета начальных значений оценочной функции в каждой паре координат.

Это является новым техническим решением в технике цифровой интерполяции прямой в n - координатном пространстве, поскольку результаты проведенного заявителем анализа аналогов и прототипа не позволили выявить признаки, тождественные всем существенным признакам данного изобретения.

Предложенный интерполятор промышленно применим, поскольку его техническая реализация возможна с использованием типовых элементов микроэлектронной техники (интегральных логических схем).

На фигУРЕ изображена схема интерполятора. Интерполятор содержит блок 1 программы, счетчик 2 приращений, блок 3 задания скорости, (n-1) одноразрядных сумматоров 4, (n-1) блоков 5 двухкоординатной интерполяции и (n-1) регистров 6 для хранения начальных значений оценочных функций. Блоки 5 двухкоординатной интерполяции работают по методу вычисления текущих значений оценочных функций.

Для интерполяции прямой в n-мерном пространстве из блока 1 программы вводятся величины координатных приращений ΔXi (i=1, 2,…, n).

Исходными программными данными для работы блоков интерполяции являются: для первого блока 5 двухкоординатной интерполяции -приращение по первой координате ΔХ1 и сумма приращений по остальным координатамдля второго блока 5 двухкоординатной интерполяции - приращение по второй координате ΔХ2 и суммаи т.д.; для последнего блока 5 двухкоординатной интерполяции - приращения по координатам ΔХn-1 и ΔХ1.

В счетчике 2 приращений с выхода первого одноразрядного сумматора 4 вводится общая сумма приращений .

Система оценочных функций, реализуемых в устройстве, имеет вид:

U1=X1ΔY2-Y2ΔX1; U2=X2ΔY3-Y3ΔX2;

Ui=XiΔYi+1-Yi+1ΔXi; Un-1=Xn-1ΔYn–УnΔХn-1, где

U1, U2,…, Un-1 _ оценочные функции,

Блок 1 программы выдает программные данные на одноразрядные сумматоры 4.

Одновременно, блок 1 программы выдает на регистры 6 начальные значения оценочных функций, рассчитанные по формуле (1) для каждой пары координат (ΔХ1 и ΔХ2), (ΔХ2 и ΔХ3), т.д.

В счетчике 2 приращений устанавливается сумма приращений по всем координатам, в регистрах первого блока 5 двухкоординатных интерполяций устанавливаются величины ΔХ1 и во втором блоке 5 двухкоординатных интерполяций ΔХ2 ии т.д. в (n-1)-м блоке 5 двухкоординатных интерполяций величины ΔХn-1 и ΔХn. С пуском интерполятора импульсы блока 3 задания скорости поступают на вход первого блока 5 двухкоординатных интерполяций и счетчика 2 приращений. В первом блоке 5 двухкоординатных интерполяций по знаку функции U1 производится либо посылка импульса на выход первой координаты и первый выход устройства Х1 (U1<0) с вычислением нового значения U1 либо посылка импульса на выход второй координаты и на импульсный вход U1≥0 с вычислением нового значения Аналогичные операции происходят и в следующих блоках 5 двухкоординатных интерполяций. Таким образом, с каждым тактом работы блока 3 задания скорости производится выдача сигнала только по одной из координат. Поэтому общее число тактов, необходимых для отработки участка, равно сумме приращений по всем координатам, которая будет зафиксирована счетчиком 2 приращений.

Предлагаемый многокоординатный интерполятор обеспечивает снижение методической погрешности в два раза, так как в нем учитываются начальные значения оценочных функций в каждой паре координат.

Многокоординатный цифровой интерполятор, содержащий блок программы, счетчик приращений, счетным входом соединенный с выходом блока задания скорости, (n-1) одноразрядных сумматоров и (n-1) блоков двухкоординатной интерполяции, причем каждый i-й одноразрядный сумматор соединен первым входом с выходом i-й координаты блока программы и входом первой координаты i-го блока двукоординатной интерполяции, вторым входом - с входом второй координаты каждого i-го блока двухкоординатной интерполяции и выходом (i+1)-го одноразрядного сумматора, при этом выход первого одноразрядного сумматора соединен с установочным входом счетчика приращений, а второй вход (n-1)-го одноразрядного сумматора подключен к выходу i-й координаты блока программы, каждый i-й блок двухкоординатной интерполяции соединен импульсным входом с выходом второй координаты (i-1)-го блока двухкоординатной интерполяции, а выходом первой координаты - с выходом i-й координаты устройства, причем импульсный вход первого блока двухкоординатной интерполяции подключен к выходу блока задания скорости, а выход второй координаты (n-1)-го блока двухкоординатной интерполяции - к выходу i-й координаты устройства, причем каждый i-й одноразрядный сумматор соединен первым входом с выходом i-й координаты блока программы и входом первой координаты i-го блока двухкоординатной интерполяции, а вторым входом - с входом второй координаты каждого i-го блока двухкоординатной интерполяции и выходом (i+1)-го одноразрядного сумматора, при этом выход первого одноразрядного сумматора соединен с установочным входом счетчика приращений, а второй вход (n-1)-го одноразрядного сумматора подключен к выходу n-й координаты блока программы, каждый i-й блок двухкоординатной интерполяции соединен импульсным входом с выходом второй координаты (i-1)-го блока двухкоординатной интерполяции, а выходом первой координаты - с выходом i-й координаты устройства, причем импульсный вход первого блока двухкоординатной интерполяции подключен к выходу блока задания скорости, а выход второй координаты (n-1)-го блока двухкоординатной интерполяции - к выходу n-й координаты устройства, отличающийся тем, что дополнительно содержит (n-1) регистров для хранения начальных значений оценочной функций, связанных по входу с блоком программ, а по выходу - с (n-1) одноименными блоками двухкоординатной интерполяции соответственно.



 

Похожие патенты:

Изобретение относится к цифровой вычислительной и информационной технике и может быть использовано в станках с программным управлением и в автоматизированных системах научных исследований.

Изобретение относится к области автоматического управления. .

Изобретение относится к автоматике и вычислительной технике, в частности к устройствам управления двухкоординатным шаговым приводом в графопостроителях. .

Изобретение относится к автоматике и вычислительной технике. .

Изобретение относится к вычислительной технике и может быть использовано в системах числового программного управления станками. .

Изобретение относится к автоматике и вычислительной технике и может быть использовано в выходных графических устройствах с линейными матричными органами регистрации, а также в станках с программным управлением, в которых применяются линейные и матричные органы.

Изобретение относится к средствам обработки и передачи сигналов там, где требуется линейное интерполирование сигналов при повышенном быстродействии или при работе в реальном масштабе времени, например телеметрии, в автоматике, связи и т.д.

Изобретение относится к автоматике и вычислительной технике и может быть использовано в выводных графических устройствах с линейными и матричными органами регистрации, в станках с программным управлением, в которых использованы линейные и матричные исполнительные органы.

Изобретение относится к области автоматики и вычислительной техники и может быть использовано в построителях графической информации и в системах числового и программного управления исполнительным оборудованием.

Изобретение относится к области автоматики и вычислительной техники и может быть использовано в выводных графических устройствах и в системах с числовым программным управлением.

Изобретение относится к автоматике и вычислительной технике. Техническим результатом является повышение точности интерполяции.

Изобретение относится к области вычислительной техники. Технический результат направлен на повышение точности и скорости автоматического обнаружения паллеты.

Изобретение относится к управлению технологическим процессом. Система управления технологическим процессом содержит: периферийное устройство управления состоянием процесса; беспроводный датчик контроля процесса на возникновение события; систему дистанционного управления, удаленную от периферийного устройства и включающую в себя первый контроллер, первую память, первый процессор и первый модуль беспроводного обмена данными.

Изобретение относится к автоматизированным системам разработки конструирования изделий, автоматизированным системам технологических процессов и станкам с числовым программным управлением.

Изобретение относится к сверлильно-клепальному оборудованию и может быть использовано при клепке криволинейных панелей. Автомат содержит верхнюю силовую головку, поддерживающе-выравнивающее устройство для панели, систему управления и три датчика-дальномера для измерения расстояния до поверхности панели.

Изобретение относится к устройству управления для использования в системе управления окружающим светом для управления окружающим светом, поступающим в пространство через отверстие.

Изобретение относится к способу управления роботами (3, 4) с соответствующими рабочими пространствами, включающими по меньшей мере одну общую область, с обеспечением управления движениями роботов и предотвращения контакта между ними в их общей области.

Изобретение относится к самонастраивающейся системе управления электроприводом. Самонастраивающийся электропривод манипуляционного робота содержит электродвигатель, редуктор, датчики положения и скорости, сумматоры, блоки умножения, задатчики сигнала, квадраторы, дифференциатор и функциональные преобразователи: синусные и косинусные.

Изобретение относится к самонастраивающейся системе управления электроприводом. Самонастраивающийся электропривод содержит последовательно соединенные первый сумматор, корректирующее устройство, усилитель, электродвигатель, связанный непосредственно с датчиком скорости и через редуктор - с датчиком положения.

Изобретение относится к управлению фрезерными станками. Технический результат - повышение точности и производительности станков.

Изобретение относится к устройству для построения программируемых цифровых микропроцессорных систем. Технический результат заключается в повышении надежности работы устройства за счет упрощения структуры многоканального операционного блока и уменьшения количества переключений.
Наверх