Комбинированный роторно-поршневой двигатель с реактивным эффектом

Изобретение относится к области утилизации энергии продуктов сгорания двигателей внутреннего сгорания. Техническим результатом является увеличение мощности и КПД всех типов ДВС. Сущность изобретения заключается в том, что комбинированный роторно-поршневой двигатель с реактивным эффектом состоит из роторного двигателя внешнего сгорания, вал которого сопряжен с валом двигателя внутреннего сгорания. Согласно изобретению выхлопные газы из двигателя внутреннего сгорания вводятся в рабочую камеру роторного двигателя через газоприемник роторного двигателя во внутренний канал вала ротора двигателя, откуда через лопасти ротора попадают в рабочую камеру роторного двигателя, где происходит преобразование их остаточной энергии давления в механическую энергию вращения вала двигательной системы. 21 ил.

 

Изобретение относится к двигателестроению, а именно к комбинированным двигателям внутреннего сгорания (ДВС), и может быть использовано в качестве привода в различных машинах, стационарных и передвижных энергетических установках в автомобильной, тракторной, электроэнергетической и других отраслях промышленности, связанных с изготовлением и эксплуатацией различных транспортных средств и силовых установок.

Изобретение объединяет в один механизм двигатель внутреннего сгорания, роторный двигатель внешнего сгорания и центробежный вытяжной насос.

Данное изобретение позволяет увеличивать мощность и КПД любых типов ДВС по сути простым добавлением, «навешиванием» на рабочий вал ДВС блока роторного двигателя с ротором и сопряженным с ним вытяжным центробежным насосом.

Известен комбинированный роторно-поршневой двигатель внутреннего сгорания, патент РФ RU 2593858 С1 «Комбинированный роторно-поршневой двигатель внутреннего сгорания», где отработанные газы поршневого ДВС отводятся в находящийся с ним на одном валу роторный двигатель. Таким образом, вал двигателя проворачивается под воздействием, как движения поршней в цилиндрах поршневого ДВС, в которых происходит сгорание топлива, так и под воздействием на лопатки ротора давления отработанных газов из поршневого ДВС.

Отработанные газы из поршневого ДВС отводятся в рабочую камеру роторного двигателя, объем которой превышает рабочий объем цилиндра поршневого ДВС настолько, чтобы в конце рабочего цикла давление газов в рабочей камере роторного двигателя было ниже атмосферного, что дает максимальное использование остаточной энергии выходных газов.

Отработанные газы в конце рабочего цикла из роторного двигателя удаляются центробежным насосом приводимым в движение общим рабочим валом поршневого ДВС и роторного двигателя.

Использование центробежного вытяжного насоса позволяет практически полностью использовать энергию рабочего тела, доводя давление отработанного рабочего тела, выходящего из ДВС и приводящего полезную работу в роторе, ниже атмосферного.

Таким образом данная схема имеет все плюсы компаудной схемы:

- повышение КПД мотора за счет более полного использования энергии, содержащейся в рабочем теле (паре или газах);

- уменьшение температуры и давления отработавшего рабочего тела. Что позволяет уменьшить и упростить глушитель на ДВС, а, следовательно, сделать эти элементы конструкции дешевле.

И лишена присущих другим вариантам компаундов недостатков:

- существенного усложнение конструкции из-за внедрения дополнительных цилиндров или сложных в изготовление и эксплуатации турбин;

- возможное уменьшение удельной мощности (зависит от конкретной конструкции) из-за внедрения дополнительных цилиндров в сравнении с двигателем однократного расширения.

Данное устройство «Комбинированный роторно-поршневой двигатель внутреннего сгорания», патент РФ RU 2593858 С1, является прототипом предоставляемого здесь изобретения.

Целью предоставляемого здесь изобретения является повышение мощности и эффективности системы преобразования энергии остаточных выхлопных газов ДВС в механическую энергию вращения рабочего вала двигателя.

Это достигается вводом выхлопных газов ДВС в рабочую камеру роторного двигателя внешнего сгорания через тело ротора роторного двигателя. Выхлопные газы ДВС проходят через ротор роторного двигателя и выходят, под давлением, через лопатки ротора в рабочую камеру роторного двигателя.

Таким образом, в представленном здесь изобретении, вал двигателя, получает приращение энергии в роторе внешнего сгорания, как от давления на лопатки ротора, так и под воздействием реактивной отдачи выходящих из сопел лопаток ротора отработанных газов из ДВС.

В прототипе, «Комбинированном роторно-поршневом двигателе внутреннего сгорания», патент РФ RU 2593858 С1, приращение энергии в двигательной системе происходит только за счет давления на лопатки ротора отработанных газов из ДВС.

Таким образом, изобретение сохраняет все достоинства прототипа и небольшим изменением его конструкции увеличивает его эффективность за счет использования реактивной отдачи выхлопных газов входящих в роторный двигатель из ДВС.

Изобретение реализуется в отдельном, довольно просто устроенном, имеющем незначительные по сравнению с поршневым мотором размеры блоке (например, для четырехцилиндрового мотора объемом 1,0 литров рабочий объем ротора буде, оценочно, 3,4 -5 литра в зависимости от типа двигателя, а общий объем блока ротор + насос приблизительно 5-9 литра, что например примерно соответствует габаритам цилиндров радиусом 12 см - 17 см при высоте - 15 см соответственно), который можно присоединять к рабочему валу и выхлопному коллектору уже существующих ДВС, и получать в результате более мощную и экономичную двигательную систему. Так оценка приращения мощности для однолитрового мотора лежит в пределах от 35 до 51 лошадиной силы.

Использование ротора внешнего сгорания позволит создать комбинированные двигатели широкого диапазона и литража, в том числе и малолитражные, не внося изменений в конструкцию ДВС.

Устройство представляет собой отдельный блок, содержащий роторный двигатель внешнего сгорания и центробежный насос, соединяющиеся своим рабочим валом с рабочим валом ДВС и входной трубкой с коллектором выхлопных газов ДВС.

На представляемых фигурах чертежей представлены следующие изображения:

- Фиг. 1 - общий вид на роторный двигатель сбоку.

- Фиг. 2 - общий вид на роторный двигатель сверху.

- Фиг. 3 - общий вид на роторный двигатель сзади.

- Фиг. 4 - общий вид на роторный двигатель спереди.

- Фиг. 5 - поперечное сечение роторного двигателя по а-а, показывающее систему входа выхлопных газов ДВС в осевой канал вала ротора роторного двигателя.

- Фиг. 6 - поперечное сечение роторного двигателя по б-б, показывающее устройство механизмов ротора, формирующих внутренние камеры, где происходит преобразование остаточной энергии давления выхлопных газов ДВС в механическую энергию вращения вала двигателя.

- Фиг. 7 - поперечное сечение роторного двигателя по в-в, показывающее устройство дисков управления задвижками ротора и привода центробежного насоса.

- Фиг. 8 - поперечное сечение роторного двигателя по г-г, показывающее устройство центробежного вытяжного насоса.

- Фиг. 9 - продольный вертикальный разрез по оси рабочего вала роторного двигателя д-д, показывающий рабочий вал роторного двигателя, диски управления задвижками и привод центробежного насоса на вал центробежного насоса.

- Фиг. 10 - продольные горизонтальные разрезы роторного двигателя по е-е и е0-е0, совмещенные по оси рабочего вала, показывающие направляющие вырезы в дисках управления задвижками, приводы управления задвижками, входящие в направляющие вырезы, задвижки рабочей камеры ротора, лопасть ротора.

- Фиг. 11 - продольные горизонтальный разрезы роторного двигателя по ё-ё и ж-ж, совмещенные по оси рабочего вала, показывающие схему каналов входа в ротор из ДВС и выхода из ротора в зону разрежения, созданную работой центробежного насоса.

- Фиг. 12 - поперечное по б-б сечение рабочей камеры ротора роторного двигателя, демонстрирующее принцип его работы.

- Фиг. 13 - вид сбоку ротора роторного двигателя ДВС.

- Фиг. 14 - Фиг. 20 - поперечные сечения ротора роторного двигателя по a1-a1, б1-б1, в1-в1, г1-г1, д1-д1, e1-e1, ё1-ё1, показывающие его устройство.

- Фиг. 21 - продольный горизонтальный разрез ротора роторного двигателя по д-д.

Комбинированный роторно-поршневой двигатель с реактивным эффектом состоит из следующих частей и элементов:

1 - Рабочий вал ДВС.

2 - Корпус камеры механизма движения задвижек роторного двигателя.

3 - Корпус вытяжного насоса роторного двигателя.

4 - Газопроводы из рабочей камеры роторного двигателя в камеру вытяжного насоса.

5 - Трубка входа выхлопных газов из ДВС в рабочую камеру роторного двигателя.

6 - Вытяжной насос.

7 - Выхлопная труба роторного двигателя из камеры вытяжного насоса.

8 - Воронка для залива масла в камеру механизма движения задвижек роторного двигателя.

9 - Заглушка слива масла из камеры механизма движения задвижек роторного двигателя.

10 - Рабочий вал роторного двигателя.

11 - Задний подшипник вала роторного двигателя в корпусе камеры механизма движения задвижек роторного двигателя.

12 - Канал для прохода выхлопных газов в роторный двигатель.

13 - Каналы в лопастях ротора для выхода выхлопных газов ДВС в рабочую камеру роторного двигателя.

14 - Корпус рабочей камеры роторного двигателя.

15 - Задняя стенка корпуса рабочей камеры ДВС.

16 - Лопасти ротора роторного двигателя.

17 - Задвижки роторного двигателя.

18 - Направляющие движения задвижек роторного двигателя.

19 - Каналы выхода выхлопных газов из рабочей камеры роторного двигателя в газопровод 4.

20 - Передний диск управления движением задвижек 17 и привода вращения вентилятора вытяжного насоса 6.

21 - Канал в диске управления задвижками 20 и в который вставлены тяги задвижек 22.

22 - Тяги задвижек.

23 - Подшипник диска управления задвижек и привода вращения вентилятора вытяжного насоса 6.

24 - Вал вытяжного насоса.

25 - Зубчатое кольцо на диске 20, через которое вращение рабочего вала передается вытяжному насосу.

26 - Шайба вентилятора вытяжного насоса.

27 - Лопасти вентилятора центробежного вытяжного насоса.

28 - Окна выхода газопроводов 4 из рабочей камеры роторного двигателя в камеру вытяжного насоса.

29 - Подшипник рабочего вала роторного двигателя в задней стенке корпуса рабочей камеры.

30 - Подшипник рабочего вала роторного двигателя в передней стенке рабочей камеры.

31 - Подшипник вала вентилятора вытяжного насоса в общей стенке корпусов камеры механизма движения задвижек роторного двигателя и вытяжного насоса роторного двигателя.

32 - Зубчатая передача вала вытяжного центробежного насоса.

33 - Коллектор выхлопных газов роторного двигателя.

34 - Газоприемник коллектора выхлопных газов роторного двигателя.

35 - Передний подшипник рабочего вала ротора роторного двигателя газоприемника роторного двигателя.

36 - Задний подшипник рабочего вала ротора роторного двигателя газоприемика.

37 - Подшипник рабочего вала роторного двигателя газоприемного коллектора роторного двигателя.

38 - Картер коллектора выхлопных газов роторного двигателя.

39 - Газопроводные окна рабочего вала роторного двигателя.

40 - Газопроводный осевой канал внутри рабочего вала ротора роторного двигателя.

41 - Задний диск управления движением задвижек 17.

42 - Канал в диске управления задвижками 20, в который вставлены тяги задвижек 22.

Роторный двигатель выполнен одним блоком.

Роторный двигатель присоединяется к любому ДВС так, что его рабочий вал сочленяется с рабочим валом ДВС, а коллектор выхлопных газов ДВС соединяется с трубкой 5 входа выхлопных газов из ДВС в рабочую камеру роторного двигателя.

Полученная таким образом система представляет собой комбинированный двигатель, состоящий из сочлененных по рабочему валу двигателя внутреннего сгорания, роторного двигателя внешнего сгорания и вытяжного насоса.

Рабочий вал проворачивается как под воздействием ДВС, так и под воздействием роторного роторного двигателя, использующего остаточную энергию выхлопных газов ДВС.

Работа роторного двигателя (роторного двигателя внешнего сгорания) происходит следующим образом Фиг. 12:

Лопатки (крылья) ротора 16 и задвижки 17 разбивают объем рабочей камеры роторного двигателя на четыре зоны. Две зоны a1 и а2, и две зоны b1 и b2 включающие в себя каналы выхода выхлопных газов из рабочей камеры роторного двигателя в газопровод 4.

Отработанные газы из поршневого ДВС поступают через коллектор 33 выхлопных газов роторного двигателя и, далее, через газопроводные окна 39 рабочего вала роторного двигателя в газопроводный осевой канал 40 внутри рабочего вала ротора роторного двигателя и, затем, через каналы 13 в лопастях ротора для выхода выхлопных газов ДВС в рабочую камеру роторного двигателя, в зоны в рабочей камере a1 и а2. Таким образом, ротор роторного двигателя получает импульс реактивной отдачи от вытекающих из его лопастей 16 выхлопных газов, и в зонах a1 и а2 возникает повышенное давление. Одновременно в зонах b1 и b2, из-за работы вытяжного насоса 6, который через каналы 4 высасывает газы из рабочей камеры ротора, возникает пониженное давление.

Таким образом, лопатки 16 со стоны зон a1 и а2 находятся под давлением, а со стороны зон б1 и б2 под разрежением. Следовательно, возникает импульс к вращению вала 1 двигателя, сопряженного с валом ДВС, увеличивая мощность и КПД всей системы.

При этом вал двигателя получает дополнительный импульс вращения как под воздействием силы реактивной отдачи от исходящих из лопастей ротора роторного двигателя выхлопных газов, так и под воздействием давления выхлопных газов на лопасти ротора роторного двигателя.

По мере вращения ротора, при приближение лопаток 16 к задвижкам 17, задвижки 17 сдвигаются из рабочей камеры роторного двигателя внутрь камеры механизма движения задвижек, пропуская лопатки 16. После чего задвижки 17 снова выдвигаются, создавая камеры a1, а2, б1, б2, и начинается новый цикл работы роторного двигателя внешнего сгорания.

Управление задвижками осуществляется вращающимися на валу двигателя дисками 20 и 41. Задвижки двигаются, или удерживаются через воздействие вращающимися дисками 20 и 41 на тяги задвижек 22, вставленных в канал 21 диска 20 и канал 42 диска 41.

Вращаясь, диск 20 кольцом планетарной зубчатой передачи 25, соединенной с зубчатой передачей вала вытяжного центробежного насоса 32, приводит вентилятор насоса в движение со скоростью вращения большей, чем скорость вращения вала двигателя, что создает постоянное разрежение в областях б1 и б2 рабочей камеры двигателя.

Камера механизма движения задвижек роторного двигателя заполняется маслом, которое, циркулируя из-за вращения дисков 20 и 41, смазывает подшипники рабочего вала двигателя, подшипник вала вентилятора вытяжного насоса 24, подшипники газоприемика 34, ролики направляющих задвижек 18, и зубчатую передачу диска 20 (зубчатое кольцо 25 и зубчатую передачу 32).

Масло из камеры механизма движения задвижек роторного двигателя свободно проникает в картер 38 коллектора выхлопных газов роторного двигателя и смазывает подшипники 35, 36, 37 коллектора выхлопных газов роторного двигателя.

Охлаждение роторного двигателя осуществляется за счет циркуляции масла, под воздействием вращения диска 20 внутри камеры механизма движения задвижек, путем переноса теплых потоков масла, разогреваемых работой механизмов в центральных областях камеры, к ее внешней оболочке, охлажденной соприкосновением с воздухом внешней среды.

Комбинированный роторно-поршневой двигатель с реактивным эффектом, состоящий из газоприемника, роторного двигателя, состоящего из сопряженного с валом двигателя внутреннего сгорания вала роторного двигателя, управляющих дисков задвижками, рабочей камеры роторного двигателя и входящих в рабочую камеру роторного двигателя лопастей, рабочей камеры роторного двигателя, задвижек рабочей камеры роторного двигателя, вытяжного насоса газов сгорания из рабочей камеры роторного двигателя, отличающийся тем, что выхлопные газы из двигателя внутреннего сгорания вводятся в рабочую камеру роторного двигателя через газоприемник роторного двигателя во внутренний канал вала ротора двигателя, откуда через лопасти ротора попадают в рабочую камеру роторного двигателя, где происходит преобразование их остаточной энергии давления в механическую энергию вращения вала двигательной системы.



 

Похожие патенты:

Изобретение относится к области двигателестроения, а именно к роторно-лопастному двигателю внутреннего сгорания (ДВС), который может быть использован на водном, воздушном и сухопутном транспорте.

Группа изобретений относится к двигателю с качающимся многоугольным поршнем. Двигатель имеет корпус (13) в форме правильного двенадцатиугольника.

Изобретение относится к области двигателестроения, а именно к роторно-лопастному двигателю внутреннего сгорания. Двигатель содержит статор 1 с впускными и выпускными окнами 2 и 3, отверстиями для свечей зажигания 12 и рабочими камерами 4 забора и сжатия топливовоздушной смеси, чередующимися с рабочими камерами 5 расширения и удаления продуктов горения, жестко закрепленный на валу цилиндрический ротор 16 с продольными пазами, в которых размещены лопатки.

Изобретение относится к энергетике. Способ сжигания топлива осуществляется в роторном двигателе внутреннего сгорания.

Изобретение относится к двигателестроению. Двигатель внутреннего сгорания содержит в корпусе несколько полых роторных секций двух типов технологического назначения: компрессорную роторную секцию и силовую роторную секцию.

Изобретение относится к двигателестроению. Роторный двигатель внутреннего сгорания содержит снабженный системой охлаждения неподвижный цилиндрический корпус, внутри которого установлен ротор.

Изобретение относится к двигателестроению. .

Изобретение относится к двигателям внутреннего сгорания. .

Изобретение относится к двигателестроению. .

Изобретение относится к двигателестроению. .

Изобретение относится к области двигателей внутреннего сгорания, а точнее к области четырехтактных двигателей внутреннего сгорания с импульсным зажиганием. Четырехтактный двигатель внутреннего сгорания имеет одно- или многоступенчатое предварительное охлаждение, что позволяет контролировать температуру и давление всасываемого воздуха в цилиндры сгорания, таким образом, гораздо более высокая степень сжатия и давление предварительного зажигания могут быть достигнуты без приближения к порогу самовоспламенения воздушно-топливной смеси.

Изобретение касается системы силовой турбины, точнее системы двухканальной силовой турбины и способа ее управления, относится к технике рекуперации энергии отработавших газов двигателя внутреннего сгорания (ДВС).

Изобретение относится к двигателестроению, а именно к двигательному узлу для гибридного автомобиля. Технический результат заключается в повышении эффективности регулирования двигателя путем изменения сопротивления потока отработавших газов.

Изобретение может быть использовано в турбокомпаундных двигательных установках с наддувом. Способ управления предназначен для турбокомпаундной двигательной установки, содержащей двигатель (1) внутреннего сгорания (ДВС), имеющий впускную линию (2) и выпускную линию (20), компрессор (11) низкого давления и компрессор (5) высокого давления, установленные в упомянутой впускной линии (2) по ходу потока воздуха, турбину (6) высокого давления и турбину (7) низкого давления, установленные в выпускной линии по ходу потока газов.

Изобретение может быть использовано в турбокомпаундных двигательных установках. Двигательная установка содержит двигатель (1) внутреннего сгорания, включающий в себя впускную и выпускную линии (2) и (20), компрессор (11) низкого давления, компрессор (5) высокого давления, турбину (6) высокого давления, турбину (7) низкого давления и первый байпасный механизм (3, 4).

Изобретение относится к области двигателестроения, а именно к комбинированным двигателям внутреннего сгорания (ДВС). Техническим результатом является уменьшение тепловых потерь и повышение экологичности.

Изобретение относится к способу регулирования передачи крутящего момента трансмиссии, расположенной между коленчатым валом турбокомпаундного двигателя внутреннего сгорания и силовой турбиной.

Изобретение относится к энергетике. .
Наверх