Устройство для геоэлектроразведки

Изобретение относится к геофизике, в частности к устройствам с использованием электромагнитных волн высокой и низкой частоты, и предназначено для обнаружения подповерхностных объектов, например газовых и нефтяных залежей, рудных месторождений, в том числе и в районах с высоким уровнем регулярных электрических помех. Технический результат: повышение эффективности устройства за счет использования составного параллельного сигнала, состоящего из группы фазоманипулированных сигналов с хорошими автокорреляционными свойствами, приводящими к повышению помехоустойчивости, чувствительности и точности измерений для обнаружения подповерхностных объектов. Сущность: устройство содержит блок (1) управления, блок (2) формирования функций Уолша, блок (3) изменения периода следования модулирующих импульсов, модуляторы (4), 2n-входовый сумматор (5), передатчик (6), антенный переключатель (7), приемник (8), многоканальный коррелятор (9), включающий в себя многоотводную линию (10i) задержки, многоканальный перемножитель (11i), многоканальный фильтр (12i) нижних частот, компаратор (13i) (где i=1, 2, 3, …, 2n - количество элементов длительностью ΔT, из которых состоит каждый фазоманипулированный сигнал с улучшенными автокорреляционными свойствами, входящий в группу последовательностей для составного параллельного сигнала), блок (14) индикации, (n-1)-разрядный двоичный счетчик (15), кольцевые четырехразрядные регистры (16), (17) и (18) сдвига, перемножители (19) группы из 2n перемножителей, антенну (20), (n-1)-входовый перемножитель (21). 1 табл., 14 ил.

 

Изобретение относится к геофизике, в частности к устройствам для геоэлектроразведки с использованием электромагнитных волн высокой и низкой частоты, и предназначено для обнаружения подповерхностных объектов, например газовых и нефтяных залежей, рудных месторождений, в том числе и в районах с высоким уровнем регулярных электрических помех.

Известен способ геоэлектроразведки, который заключается в возбуждении электромагнитного поля в течение заданного времени Т в виде последовательности идентичных импульсов с заданной длительностью ΔT каждого импульса, модулированной периодическим сигналом в виде прямоугольной функции, и в корреляционном приеме сигналов, возбуждаемую последовательность формируют как сумму по меньшей мере двух последовательностей L с одинаковой длительностью каждой из L упомянутых последовательностей, сдвинутых относительно начала возбуждения на время соответственно, а в качестве модулирующего сигнала выбирают функцию Уолша, кроме того, принимаемый сигнал коррелируют с каждой из L упомянутых последовательностей, при этом корреляцию осуществляют в базисе функций Уолша, откоррелированные сигналы умножают на модулирующую функцию последовательности, перемножают и суммируют (см. авторское свидетельство №1013888 по заявке №3343720/18-25 от 08.10.81 на изобретение «Способ геоэлектроразведки», опубликованный 23.04.83, кл. G01V 3/12).

Однако данный способ, использующий сумму по меньшей мере двух последовательностей L с одинаковой длительностью каждой из L упомянутых последовательностей, то есть составной параллельный сигнал, применяет в качестве базисной системы систему функций Уолша, которая обладает плохими автокорреляционными свойствами, приводящими к низкой помехоустойчивости, чувствительности и точности измерений для обнаружения подповерхностных объектов, например газовых и нефтяных залежей, рудных месторождений.

Известен также способ геоэлектроразведки, заключающийся в том, что формируют последовательность радиоимпульсов с заданными периодом, длительностью и формой модулирующего импульса, изменяют частоту несущей от радиоимпульса к радиоимпульсу последовательно по заданному закону, для формирования зондирующего сигнала выполняют фазовую манипуляцию на 180° последовательности радиоимпульсов, принимают отраженный фазоманипулированный сигнал, формируют опорное напряжение со стабильной частотой, перемножают его с отраженным фазоманипулированным сигналом, фильтруют напряжение суммарной частоты, перемножают его с зондирующим фазоманипулированным сигналом, фильтруют напряжение разностной частоты, определяют величину разности фаз между напряжением разностной частоты и опорным напряжением, функцию зависимости величины разности фаз от номера радиоимпульса и ее корреляционные характеристики, по измеренным величинам судят о свойствах геологических тел и вмещающих пород, одновременно производят корреляционную обработку зондирующего и отраженного фазоманипулированных сигналов, по максимальному значению корреляционной функции определяют время задержки отраженного фазоманипулированного сигнала по отношению к зондирующему фазоманипулированному сигналу, по значению времени задержки судят о глубине залегания геологических тел (см. патент Российской Федерации №2044331 по заявке №5032990/25 от 03.03.92 на изобретение «Способ геоэлектроразведки», опубликованный 20.09.95, кл. G01V 3/12).

Однако указанный способ, используя зондирующий сигнал, не описывает конкретную структуру зондирующего фазоманипулированного сигнала и его автокорреляционные свойства. При этом зондирующий фазоманипулированный сигнал не является составным параллельным сигналом, что приводит к низкой помехоустойчивости, чувствительности и точности измерений для обнаружения подповерхностных объектов, например газовых и нефтяных залежей, рудных месторождений, в том числе и в районах с высоким уровнем регулярных электрических помех.

Известно устройство для геоэлектроразведки, содержащее блок управления, блок изменения периода следования модулирующих импульсов, передатчик, антенный переключатель, антенну, приемник, компаратор, состоящий из i элементов (где i - число каналов многоканального коррелятора), блок индикации, многоканальный коррелятор, включающий в себя многоотводную линию задержки, многоканальный перемножитель и многоканальный фильтр нижних частот, блок формирования функций Уолша, нуль-орган, триггер, первый ключ и второй ключ, двухвходовый сумматор, управляемый инвертор, группа из 2n перемножителей (где 2n - число фазоманипулированных сигналов с улучшенными автокорреляционными свойствами, входящих в группу последовательностей для составного параллельного сигнала), группа из 2n модуляторов, 2n - входовый сумматор, 2n-1 - разрядный циклический регистр сдвига, причем первый выход блока управления подключен к тактовому входу блока формирования функций Уолша, второй выход блока формирования функций Уолша подключен к входу нуль-органа, выход которого соединен с счетным входом триггера, прямой выход которого подключен к управляющему входу первого ключа, инверсный выход триггера подключен к управляющему входу второго ключа, выходы первого и второго ключей соединены с входами двухвходового сумматора, выход двухвходового сумматора подключен к информационному входу управляемого инвертора, управляющий вход которого соединен с выходом старшего разряда 2n-1-разрядного циклического регистра сдвига, сдвигающий вход которого подключен к первому выходу блока управления, (2n-1-2)-й выход блока формирования функций Уолша подключен к информационному входу первого ключа, (2n-4)-й выход блока формирования функций Уолша подключен к информационному входу второго ключа, выход управляемого инвертора подключен к первым входам перемножителей группы из 2n перемножителей, вторые входы i-х перемножителей подключены к i-м выходам блока формирования функций Уолша, выходы i-х перемножителей подключены к первым входам i-х модуляторов группы из 2n модуляторов, вторые входы модуляторов соединены с выходом блока изменения периода следования модулирующих импульсов, выходы модуляторов подключены к входам 2n-входового сумматора, выход которого подключен к входу передатчика, второй выход блока управления подключен к входу блока изменения периода следования модулирующих импульсов, вход антенного переключателя подключен к выходу передатчика, первый выход антенного переключателя подключен к антенне, к второму выходу антенного переключателя подключен приемник, к выходу передатчика подключен первый вход многоканального коррелятора, являющийся входом многоотводной линии задержки, второй вход многоканального коррелятора, являющийся одиночным входом многоканального перемножителя, соединен с выходом приемника, i-е выходы многоотводной линии задержки подключены к i-м входам группы входов многоканального перемножителя, i-е выходы многоканального перемножителя подключены к i-м входам многоканального фильтра низких частот, i-е выходы многоканального фильтра низких частот, являющиеся i-ми выходами многоканального коррелятора, подключены к первым входам i-х элементов компаратора и к вторым входам (i-1)-х элементов компаратора, выходы элементов компаратора подключены к входам блока индикации (см. патент Российской Федерации №2366983 по заявке №2008114897/28 от 15.04.2008 на изобретение «Устройство для геоэлектроразведки», опубликованный 10.09.2009, бюл. №25, кл. G01V 3/12). Указанное устройство является аналогом предлагаемого изобретения.

Однако известное устройство для геоэлектроразведки обладает низкой эффективностью вследствие использования зондирующего фазоманипулированного сигнала, являющегося составным параллельным сигналом, состоящим из группы фазоманипулированных сигналов с плохими автокорреляционными свойствами, что приводит к низкой помехоустойчивости, чувствительности и точности измерений для обнаружения подповерхностных объектов. Сложные фазоманипулированные зондирующие сигналы на базе используемых дискретных ортогональных функций в данном устройстве для геоэлектроразведки имеют максимальный боковой пик автокорреляционной функции R(τ)max меньше в 1,875 раз, чем сложные фазоманипулированные зондирующие сигналы, использующие функции Уолша. При этом показатель различимости (ПР) у них больше, чем у сложных фазоманипулированных зондирующих сигналы, использующих функции Уолша, только в 8 раз, что явно недостаточно.

Известно устройство для геоэлектроразведки, содержащее блок управления, блок изменения периода следования модулирующих импульсов, передатчик, антенный переключатель, антенну, приемник, компаратор, состоящий из i элементов (где i - число каналов многоканального коррелятора), блок индикации, многоканальный коррелятор, включающий в себя многоотводную линию задержки, многоканальный перемножитель и многоканальный фильтр нижних частот, блок формирования функций Уолша, группу из 2n перемножителей (где 2n - число фазоманипулированных сигналов с улучшенными автокорреляционными свойствами, входящих в группу последовательностей для составного параллельного сигнала), группу из 2n модуляторов, 2n - входовый сумматор, элемент односторонней проводимости, двухразрядный регистр сдвига, двухвходовый коммутатор и дополнительный перемножитель, причем второй выход блока управления подключен к входу блока изменения периода следования модулирующих импульсов, вход антенного переключателя подключен к выходу передатчика, первый выход антенного переключателя подключен к антенне, к второму выходу антенного переключателя подключен приемник, к выходу передатчика подключен первый вход многоканального коррелятора, являющийся входом многоотводной линии задержки, второй вход многоканального коррелятора, являющийся одиночным входом многоканального перемножителя, соединен с выходом приемника, i-е выходы многоотводной линии задержки подключены к i-м входам группы входов многоканального перемножителя, i-е выходы многоканального перемножителя подключены к i-м входам многоканального фильтра низких частот, i-е выходы многоканального фильтра низких частот, являющиеся i-ми выходами многоканального коррелятора, подключены к первым входам i-х элементов компаратора и к вторым входам (i-1)-х элементов компаратора, выходы элементов компаратора подключены к входам блока индикации, первый выход блока управления подключен к тактовому входу блока формирования функций Уолша, вторые входы i-х перемножителей группы из 2n перемножителей подключены к i-м выходам блока формирования функций Уолша, выходы i-х перемножителей группы из 2n перемножителей подключены к первым входам i-х модуляторов группы из 2n модуляторов, вторые входы модуляторов соединены с выходом блока изменения периода следования модулирующих импульсов, выходы модуляторов подключены к входам 2n - входового сумматора, выход которого подключен к входу передатчика, второй выход блока формирования функций Уолша подключен к входу элемента односторонней проводимости, первый выход блока управления подключен к тактовому входу двухразрядного регистра сдвига, выход элемента односторонней проводимости соединен с информационным входом двухразрядного регистра сдвига, выход двухразрядного регистра сдвига подключен к управляющему входу двухвходового коммутатора, первый информационный вход которого соединен с (2n-1-2)-м выходом блока формирования функций Уолша, второй информационный вход двухвходового коммутатора соединен с (2n-1+1)-м выходом блока формирования функций Уолша, выход двухвходового коммутатора подключен к первому входу дополнительного перемножителя, второй вход которого подключен к второму выходу блока формирования функций Уолша, выход дополнительного перемножителя соединен с первыми входами всех перемножителей группы из 2n перемножителей (см. патент Российской Федерации №2408038 по заявке №2009146996/28 от 17.12.2009 на изобретение «Устройство для геоэлектроразведки с повышенной помехоустойчивостью, чувствительностью и точностью измерений», опубликованный 27.12.2010, бюл. №36, кл. G01V 3/12). Указанное устройство является прототипом предлагаемого изобретения.

Однако известное устройство для геоэлектроразведки обладает низкой эффективностью вследствие использования зондирующего фазоманипулированного сигнала, являющегося составным параллельным сигналом, состоящим из группы фазоманипулированных сигналов с плохими автокорреляционными свойствами, что приводит к низкой помехоустойчивости, чувствительности и точности измерений для обнаружения подповерхностных объектов. Сложные фазоманипулированные зондирующие сигналы на базе используемых дискретных ортогональных функций в известном устройстве для геоэлектроразведки имеют максимальный боковой пик автокорреляционной функции R(τ)max меньше в 2,143 раз, чем сложные фазоманипулированные зондирующие сигналы, использующие функции Уолша. При этом показатель различимости (ПР) у них больше, чем у сложных фазоманипулированных зондирующих сигналы, использующих функции Уолша, только в 9 раз, что явно недостаточно.

Целью изобретения является повышение эффективности устройства для геоэлектроразведки за счет использования составного параллельного сигнала, состоящего из группы фазоманипулированных сигналов с хорошими автокорреляционными свойствами, приводящими к повышению помехоустойчивости, чувствительности и точности измерений для обнаружения подповерхностных объектов, например газовых и нефтяных залежей, рудных месторождений, в том числе и в районах с высоким уровнем регулярных электрических помех.

При этом сложные фазоманипулированные зондирующие сигналы на базе разработанных дискретных ортогональных функций Tur(i,θ) в предлагаемом устройстве для геоэлектроразведки имеют максимальный боковой пик автокорреляционной функции R(τ)max меньше в 3 раза, чем сложные фазоманипулированные зондирующие сигналы, использующие функции Уолша; меньше в 1,6 раза, чем сложные фазоманипулированные зондирующие сигналы, используемые в аналоге (см. патент Российской Федерации №2366983 по заявке №2008114897/28 от 15.04.2008 на изобретение «Устройство для геоэлектроразведки», опубликованный 10.09.2009, бюл. №25, кл. G01V 3/12); меньше в 1,4 раза, чем сложные фазоманипулированные зондирующие сигналы, используемые в прототипе (см. патент Российской Федерации №2408038 по заявке №2009146996/28 от 17.12.2009 на изобретение «Устройство для геоэлектроразведки с повышенной помехоустойчивостью, чувствительностью и точностью измерений», опубликованный 27.12.2010, бюл. №36, кл. G01V 3/12).

Кроме того, показатель различимости (ПР) у дискретных ортогональных функций Tur(i,θ) больше, чем у сложных фазоманипулированных зондирующих сигналов, использующих функции Уолша, в 11 раз; больше, чем у сложных фазоманипулированных зондирующих сигналов, используемых в аналоге в 1,375 раза (см. патент Российской Федерации №2366983 по заявке №2008114897/28 от 15.04.2008 на изобретение «Устройство для геоэлектроразведки», опубликованный 10.09.2009, бюл. №25, кл. G01V 3/12); больше, чем у сложных фазоманипулированных зондирующих сигналов, используемых в прототипе в 1,222 раза (см. патент Российской Федерации №2408038 по заявке №2009146996/28 от 17.12.2009 на изобретение «Устройство для геоэлектроразведки с повышенной помехоустойчивостью, чувствительностью и точностью измерений», опубликованный 27.12.2010, бюл. №36, кл. G01V 3/12), что значительно повышает эффективность устройства для геоэлектроразведки за счет использования системы фазоманипулированных сигналов с хорошими автокорреляционными свойствами, приводящими к повышению помехоустойчивости, чувствительности и точности измерений для обнаружения подповерхностных объектов, например газовых и нефтяных залежей, рудных месторождений.

Поставленная цель достигается тем, что в известное устройство для геоэлектроразведки, содержащее блок управления, блок изменения периода следования модулирующих импульсов, передатчик, антенный переключатель, антенну, приемник, компаратор, состоящий из i элементов (где i - число каналов многоканального коррелятора), блок индикации, многоканальный коррелятор, включающий в себя многоотводную линию задержки, многоканальный перемножитель и многоканальный фильтр нижних частот, блок формирования функций Уолша, группу из 2n перемножителей (где 2n - число фазоманипулированных сигналов с улучшенными автокорреляционными свойствами, входящих в группу последовательностей для составного параллельного сигнала), группу из 2n модуляторов, 2n - входовый сумматор, причем второй выход блока управления подключен к входу блока изменения периода следования модулирующих импульсов, вход антенного переключателя подключен к выходу передатчика, первый выход антенного переключателя подключен к антенне, к второму выходу антенного переключателя подключен приемник, к выходу передатчика подключен первый вход многоканального коррелятора, являющийся входом многоотводной линии задержки, второй вход многоканального коррелятора, являющийся одиночным входом многоканального перемножителя, соединен с выходом приемника, i-е выходы многоотводной линии задержки подключены к i-м входам группы входов многоканального перемножителя, i-е выходы многоканального перемножителя подключены к i-м входам многоканального фильтра низких частот, i-е выходы многоканального фильтра низких частот, являющиеся i-ми выходами многоканального коррелятора, подключены к первым входам i-х элементов компаратора и к вторым входам (i-1)-х элементов компаратора, выходы элементов компаратора подключены к входам блока индикации, первый выход блока управления подключен к тактовому входу блока формирования функций Уолша, вторые входы i-х перемножителей группы из 2n перемножителей подключены к i-м выходам блока формирования функций Уолша, выходы i-х перемножителей группы из 2n перемножителей подключены к первым входам i-х модуляторов группы из 2n модуляторов, вторые входы модуляторов соединены с выходом блока изменения периода следования модулирующих импульсов, выходы модуляторов подключены к входам 2n - входового сумматора, выход которого подключен к входу передатчика введены (n-1) - разрядный двоичный счетчик, (n-1) кольцевых четырехразрядных регистра сдвига, (n-1) - входовый перемножитель, причем выход j-го разряда (n-1) - разрядного двоичного счетчика (где j - порядковый номер разряда (n-1) - разрядного двоичного счетчика) подключен к тактовому входу j-го кольцевого четырехразрядного регистра сдвига, информационный выход j-го кольцевого четырехразрядного регистра сдвига подключен к j-му информационному входу (n-1) - входового перемножителя, информационный выход (n-1)-входового перемножителя соединен с первыми входами всех перемножителей группы из 2n перемножителей.

На фиг.1 представлена структурная схема устройства для геоэлектроразведки с повышенной помехоустойчивостью, чувствительностью и точностью измерений для варианта с использованием 2n=16 фазоманипулированных сигналов с улучшенными автокорреляционными свойствами

Устройство для геоэлектроразведки содержит блок 1 управления, блок 2 формирования функций Уолша, блок 3 изменения периода следования модулирующих импульсов, модуляторы 4, 2n - входовый сумматор 5, передатчик 6, антенный переключатель 7, приемник 8, многоканальный коррелятор 9, включающий в себя многоотводную линию 10i задержки, многоканальный перемножитель 11i, многоканальный фильтр 12i нижних частот, компаратор 13i (где i=l,2, 3, … , 2n - количество элементов длительностью ΔT, из которых состоит каждый фазоманипулированный сигнал с улучшенными автокорреляционными свойствами, входящий в группу последовательностей для составного параллельного сигнала), блок 14 индикации, (n-1) - разрядный двоичный счетчик 15, кольцевые четырехразрядные регистры 16, 17 и 18 сдвига, перемножители 19 группы из 2n перемножителей, антенну 20, (n-1) - входовый перемножитель 21.

Известно, что при построении устройств для геоэлектроразведки или систем радиолокации функция автокорреляции представляет наибольший интерес при выборе кодовых последовательностей (сложных фазоманипулированных зондирующих сигналов). Для устранения маскирующего действия близких по дальности объектов (целей) нужно уменьшать остатки (боковые пики функций автокорреляции зондирующих сигналов) (см. Вакман Д.Е., Седлецкий P.M. Вопросы синтеза радиолокационных сигналов. - М.: Советское радио, 1973, стр. 48, четвертый абзац сверху). То есть более высокую точность обеспечивает использование сложных фазоманипулированных зондирующих сигналов, обладающих малыми боковыми пиками функций автокорреляции.

Кроме того, для получения наименьшей вероятности установления ложной синхронизации (ошибки при анализе отраженного сложного фазоманипулированного зондирующего сигнала), а следовательно, повышения помехоустойчивости, чувствительности и точности измерений при обнаружении подповерхностных объектов, более точного определения места и глубины залегания газовых, нефтяных и рудных месторождений, в том числе и в районах с высоким уровнем регулярных электрических помех, необходимо использовать сигналы с малыми боковыми пиками функций автокорреляции (см. Диксон Р.К. Широкополосные системы. - М.: Связь, 1979, стр. 64, первый абзац снизу).

Известно, что автокорреляционная функция сигнала S(t) определяется выражением:

где τ - величина временного сдвига сигнала.

Из выражения (1) видно, что R(τ) характеризует степень связи (корреляции) сигнала S(t) с его копией, сдвинутой на величину τ по оси времени.

Ясно, что функция R(τ) достигает максимума при τ=0, так как любой сигнал полностью коррелирован с самим собой.

При этом:

то есть максимальное значение автокорреляционной функции равно энергии сигнала (см. Гоноровский И.С. Радиотехнические цепи и сигналы. - М.: Советское радио, 1971, стр. 68).

Для случая сигналов, пронормированных по энергии с учетом Е=1 автокорреляционная функция сигнала состоит из центрального пика с амплитудой 1, размещенного на интервале (-τ0, τ0) и боковых пиков, распределенных на интервалах (-Т, -τ0) и (τ0, Т). Амплитуды боковых пиков принимают различные значения, но у сигналов с хорошими корреляционными свойствами они малы, то есть существенно меньше амплитуды центрального пика, равной 1 (см. Варакин Л.Е. Системы связи с шумоподобными сигналами. - М: Радио и связь, 1985, стр. 30).

Значения боковых пиков функции автокорреляции, которые обычно меньше основного, зависят от реально используемой кодовой последовательности (сложного фазоманипулированного зондирующего сигнала). При возникновении таких боковых пиков функции корреляции способность приемника в составе устройства для геоэлектроразведки к установлению надежной синхронизации (точному анализу отраженного сложного фазоманипулированного зондирующего сигнала) ухудшается, так как в этом случае он должен различать основной и максимальный боковой пики функции корреляции (см. Диксон Р.К. Широкополосные системы. - М.: Связь, 1979, стр. 67).

Корреляционные свойства кодовой последовательности характеризует показатель различимости (ПР), определяемый как разность значений функции автокорреляции, соответствующих основному и максимальному боковому пикам. Очевидно, чем больше ПР, тем лучше кодовая последовательность (см. Диксон Р.К. Широкополосные системы. - М.: Связь, 1979, стр. 65, а также стр. 66, рис. 3.11), тем выше точность и достоверность использующей ее системы.

Таким образом, наиболее важной проблемой является отыскание сигналов с малыми остатками корреляционной функции (см. Вакман Д.Е., Седлецкий P.M. Вопросы синтеза радиолокационных сигналов. - М.: Советское радио, 1973, стр. 279, первый абзац снизу).

К сожалению, в прототипе (см. патент Российской Федерации №2408038 по заявке №2009146996/28 от 17.12.2009 на изобретение «Устройство для геоэлектроразведки с повышенной помехоустойчивостью, чувствительностью и точностью измерений», опубликованный 27.12.2010, бюл. №36, кл. G01V 3/12) структура таких сигналов и их конкретные автокорреляционные функции являются весьма посредственными, явно не удовлетворяющими соответствующим требованиям.

Прототип обладает низкой эффективностью вследствие использования зондирующего фазоманипулированного сигнала, являющегося составным параллельным сигналом, состоящим из группы фазоманипулированных сигналов с плохими автокорреляционными свойствами, что приводит к низкой помехоустойчивости, чувствительности и точности измерений для обнаружения подповерхностных объектов. Сложные фазоманипулированные зондирующие сигналы на базе используемых дискретных ортогональных функций в данном устройстве для геоэлектроразведки имеют максимальный боковой пик автокорреляционной функции R(τ)max меньше в 2,143 раз, чем сложные фазоманипулированные зондирующие сигналы, использующие функции Уолша. При этом показатель различимости (ПР) у них больше, чем у сложных фазоманипулированных зондирующих сигналы, использующих функции Уолша, только в 9 раз, что явно недостаточно.

Для сложных фазоманипулированных зондирующих сигналов, использующих функции Уолша, использующих дискретные ортогональные функции, предложенными в аналоге (см. патент Российской Федерации №2366983 по заявке №2008114897/28 от 15.04.2008 на изобретение «Устройство для геоэлектроразведки», опубликованный 10.09.2009, бюл. №25, кл. G01V 3/12), использующих дискретные ортогональные функции, предложенные в прототипе (см. патент Российской Федерации №2408038 по заявке №2009146996/28 от 17.12.2009 на изобретение «Устройство для геоэлектроразведки с повышенной помехоустойчивостью, чувствительностью и точностью измерений», опубликованный 27.12.2010, бюл. №36, кл. G01V 3/12) и предлагаемые в данном изобретении были рассчитаны автокорреляционные функции, максимальные боковые пики автокорреляционных функций сигналов и показатели различимости (ПР).

Результаты расчетов для случая 2n=16 представлены в таблице 1.

По результатам, представленным в таблице 1, видно, что сложные фазоманипулированные зондирующие сигналы на базе разработанных дискретных ортогональных функций Tur(i,θ) в предлагаемом устройстве для геоэлектроразведки имеют максимальный боковой пик автокорреляционной функции R(τ)max меньше в 3 раза, чем сложные фазоманипулированные зондирующие сигналы, использующие функции Уолша; меньше в 1,6 раза, чем сложные фазоманипулированные зондирующие сигналы, используемые в аналоге (см. патент Российской Федерации №2366983 по заявке №2008114897/28 от 15.04.2008 на изобретение «Устройство для геоэлектроразведки», опубликованный 10.09.2009, бюл. №25, кл. G01V 3/12); меньше в 1,4 раза, чем сложные фазоманипулированные зондирующие сигналы, используемые в прототипе (см. патент Российской Федерации №2408038 по заявке №2009146996/28 от 17.12.2009 на изобретение «Устройство для геоэлектроразведки с повышенной помехоустойчивостью, чувствительностью и точностью измерений», опубликованный 27.12.2010, бюл. №36, кл. G01V 3/12).

При этом показатель различимости (ПР) у дискретных ортогональных функций Tur(i,θ) больше, чем у сложных фазоманипулированных зондирующих сигналов, использующих функции Уолша, в 11 раз; больше, чем у сложных фазоманипулированных зондирующих сигналов, используемых в аналоге в 1,375 раза (см. патент Российской Федерации №2366983 по заявке №2008114897/28 от 15.04.2008 на изобретение «Устройство для геоэлектроразведки», опубликованный 10.09.2009, бюл. №25, кл. G01V 3/12); больше, чем у сложных фазоманипулированных зондирующих сигналов, используемых в прототипе в 1,222 раза (см. патент Российской Федерации №2408038 по заявке №2009146996/28 от 17.12.2009 на изобретение «Устройство для геоэлектроразведки с повышенной помехоустойчивостью, чувствительностью и точностью измерений», опубликованный 27.12.2010, бюл. №

На фиг.1 представлена структурная схема предлагаемого устройства для геоэлектроразведки, на фиг.2 - временные диаграммы, иллюстрирующие процесс формирования сложного фазоманипулированного зондирующего сигнала Tur(10,θ), на фиг.3 - временные диаграммы системы функций Уолша, на фиг.4 и 5 - автокорреляционные функции сигналов Уолша, на фиг.6 - временные диаграммы системы дискретных ортогональных функций S(i,θ) в аналоге, на фиг.7 и 8 - автокорреляционные функции сигналов S(i,θ) в аналоге, фиг.9 - временные диаграммы системы дискретных ортогональных функций V(i,θ) в прототипе, на фиг.10 и 11 - автокорреляционные функции сигналов V(i,θ) в прототипе, на фиг.12 - временные диаграммы системы дискретных ортогональных функций Тur(i,θ) в предлагаемом устройстве, на фиг.13 и 14 - автокорреляционные функции сигналов Tur(i,θ) в предлагаемом устройстве для геоэлектроразведки.

В силу симметрии автокорреляционных функций сигналов относительно оси ординат на рисунках представлены только правые части графиков.

Устройство для геоэлектроразведки для варианта с использованием 2n=16 фазоманипулированных сигналов работает следующим образом.

Перед началом работы устройства для геоэлектроразведки в разрядах кольцевых четырехразрядных регистров 16, 17 и 18 сдвига записаны коды вида -1,+1,+1,+1.

В процессе проведения геоэлектроразведки с первого выхода блока 1 управления тактовые импульсы подаются на тактовый вход блока 2 формирования функций Уолша (фиг.2, а), на его выходах при этом формируются функции Уолша Wal(i,θ), поступающие на вторые входы соответствующих перемножителей 19 группы из 2n перемножителей. В это время импульсы синхронизации со второго выхода блока 1 управления поступают на вход блока 3 изменения периода следования модулирующих импульсов. Блок 3 изменения периода следования модулирующих импульсов формирует модулирующие импульсы синхронно с формированием элементов функций Уолша длительностью ΔT (фиг.2, б). Модулирующие импульсы подаются на вторые входы модуляторов 4, где осуществляется манипуляция их фазы на 180° в соответствии со структурой сигналов, поступающих на первые входы модуляторов 4 с выходов перемножителей 19.

На выходе первого разряда двоичного счетчика 15 формируется сигнал, представленный на фиг.2, в. На выходе второго разряда двоичного счетчика 15 формируется сигнал, представленный на фиг.2, г. На выходе третьего разряда двоичного счетчика 15 формируется сигнал, представленный на фиг.2, д. Сигналы с выходов разрядов двоичного счетчика 15 подаются на тактовые входы соответствующих кольцевых четырехразрядных регистров 16, 17 и 18 сдвига. Поскольку в разрядах кольцевых четырехразрядных регистров 16, 17 и 18 сдвига были записаны коды вида -1,+1,+1,+1, на информационном выходе первого кольцевого четырехразрядного регистра 16 сдвига формируется сигнал, представленный на фиг.2, е, на информационном выходе второго кольцевого четырехразрядного регистра 17 сдвига формируется сигнал, представленный на фиг.2, ж, на информационном выходе третьего кольцевого четырехразрядного регистра 18 сдвига формируется сигнал, представленный на фиг.2, з.

Указанные сигналы с информационных выходов кольцевых четырехразрядных регистров 16, 17 и 18 сдвига поступают на соответствующие входы трехвходового перемножителя 21. При перемножении в перемножителе 21 трех сигналов (фиг 2, е; фиг 2, ж; фиг 2, з) на его информационном выходе формируется результат перемножения (фиг.2, и). Сигнал, представляющий собой указанный результат перемножения, является сигналом Тur(0,θ).

Сигнал Tur(0, θ) (фиг.2, и) поступает на первые входы всех перемножителей 19 группы.

Поскольку на вторые входы перемножителей 19 группы подаются соответствующие сигналы Уолша Wal(i,θ), на выходах перемножителей 19 группы формируются функции Tur(i,θ), имеющие вид, отличающийся от вида функций Уолша Wal(i,θ). Вид функций Tur(i,θ) также отличается от вида функций S(i,θ), используемых в аналоге, и отличается от вида функций V(i,θ), используемых в прототипе.

На фиг.2 приведены диаграммы, иллюстрирующие процесс формирования в предлагаемом устройстве для геоэлектроразведки дискретной ортогональной функции Tur(10,θ) и модулированного сигнала на выходе соответствующего модулятора 4 (для шестнадцатиканального варианта устройства).

На диаграммах указано временное состояние:

а) первого выхода блока 1 управления;

б) выхода блока 3 изменения периода следования модулирующих импульсов;

в) выхода первого разряда двоичного счетчика 15;

г) выхода второго разряда двоичного счетчика 15;

д) выхода третьего разряда двоичного счетчика 15;

е) информационного выхода первого кольцевого четырехразрядного регистра 16 сдвига;

ж) информационного выхода второго кольцевого четырехразрядного регистра 16 сдвига;

з) информационного выхода третьего кольцевого четырехразрядного регистра 16 сдвига;

и) информационного выхода перемножителя 21, на котором формируется функция Tur(0,θ);

й) одиннадцатого выхода блока 2 формирования функций Уолша, на котором формируется функция Wal(10,θ);

к) выхода одиннадцатого перемножителя 19, на котором формируется функция Tur(10,θ);

л) выхода одиннадцатого модулятора 4, на котором формируется соответствующий модулированный сигнал для составного параллельного сигнала, появляющегося на выходе 2n - входового сумматора 5.

Сигнал с информационного выхода перемножителя 21, на котором формируется функция Tur(0,θ) умножается в перемножителях 19 на функции Уоша Wal(i,θ). В результате этого на выходах перемножителей 19 формируется система дискретных ортогональных функций Tur(i,θ).

Функции Tur(i,θ), обладающие хорошими автокорреляционными свойствами, подаются на первые входы соответствующих модуляторов 4, на вторые входы которых подаются модулирующие импульсы с выхода блока 3 изменения периода следования модулирующих импульсов, формирующего модулирующие импульсы синхронно с элементами сигналов Tur(i,θ). Модулированные сигналы с выходов модуляторов 4 поступают на соответствующие входы 2n - входового сумматора 5, на выходе которого формируется составной параллельный фазоманипулированный зондирующий сигнал U1(t).

Составной параллельный сигнал с выхода 2n - входового сумматора 5 поступает на вход передатчика 6, на выходе которого формируется зондирующий сигнал U1(t).

Зондирующий сигнал U1(t) через антенный переключатель 7 поступает на антенну 20 и излучается в направлении исследуемой среды. Зондирующий сигнал U1(t) проходит через среду и достигает исследуемого объекта, частично поглощающего его и частично отражающего в направлении приемопередающей антенны 20. Зондирующий сигнал U1(t) с выхода передатчика 6 и отраженный зондирующий сигнал U2(t) с выхода антенны 20 через антенный переключатель 7 и приемник 8 поступают соответственно на первый и второй входы многоканального коррелятора 9, аналогичного коррелятору, используемому в прототипе (см. патент Российской Федерации №2408038 по заявке №2009146996/28 от 17.12.2009 на изобретение «Устройство для геоэлектроразведки с повышенной помехоустойчивостью, чувствительностью и точностью измерений», опубликованный 27.12.2010, бюл. №36, кл. G01V 3/12).

Многоканальный коррелятор 9 состоит из многоотводной линии 10i задержки, многоканального перемножителя 11i, многоканального фильтра 12i нижних частот (где i=1, 2, 3, …, 2n - количество элементов длительностью ΔТ, из которых состоит каждый фазоманипулированный сигнал с улучшенными автокорреляционными свойствами, входящий в группу последовательностей для составного параллельного сигнала). На выходе многоканального коррелятора 9 образуется напряжение, пропорциональное автокорреляционной функции R(τ), которое будет иметь максимальное значение при τ=0. С выходов коррелятора 9 напряжения соответствующих каналов поступают на входы компаратора 13, состоящего из 2n элементов. Каждый i-й элемент компаратора 13 представляет собой аналоговый элемент сравнения, в котором сравниваются два напряжения: входное Uвх и опорное Uоп. В случае превышения входного напряжения над опорным (Uвх>Uоп) на выходе i-го элемента компаратора 13 формируется напряжение, соответствующее логической единице. Напряжения с выходов многоканального коррелятора 9 подаются на элементы компаратора 13 таким образом, что на два соседних элемента подается одно и то же напряжение, причем на один элемент из пары этих элементов в качестве входного напряжения Uвх а на другой элемент в качестве опорного напряжения Uоп.

Следовательно, на выходах компаратора 13 образуется параллельный двоичный код, в котором логическая единица соответствует превышению напряжения в (i+1)-м канале коррелятора 9 над напряжением в i-м канале. Последовательность единиц двоичного кода соответствует возрастанию автокорреляционной функции R(τ), а последовательность логических нулей соответствует спаду автокорреляционной функции R(τ). Таким образом, переход от последовательности единиц к последовательности нулей будет соответствовать максимуму автокорреляционной функции R(τ). Подсчет количества единиц двоичного кода определяет номер канала, в котором значение R(τ) максимально, а, следовательно, и значение временной задержки τ отраженного зондирующего сигнала U2(t) по отношению к переданному зондирующему сигналу U1(t), то есть факт месторасположения и глубину залегания исследуемого объекта.

Таким образом, за счет использования составного параллельного сигнала, состоящего из группы фазоманипулированных сигналов Tur(i,θ) с хорошими автокорреляционными свойствами, повышается эффективность устройства для геоэлектроразведки, приводящая к повышению помехоустойчивости, чувствительности и точности измерений для обнаружения подповерхностных объектов, например газовых и нефтяных залежей, рудных месторождений.

Сложные фазоманипулированные зондирующие сигналы на базе разработанных дискретных ортогональных функций Tur(i,θ) в предлагаемом устройстве для геоэлектроразведки имеют максимальный боковой пик автокорреляционной функции R(τ)max меньше в 3 раза, чем сложные фазоманипулированные зондирующие сигналы, использующие функции Уолша; меньше в 1,6 раза, чем сложные фазоманипулированные зондирующие сигналы, используемые в аналоге (см. патент Российской Федерации №2366983 по заявке №2008114897/28 от 15.04.2008 на изобретение «Устройство для геоэлектроразведки», опубликованный 10.09.2009, бюл. №25, кл. G01V 3/12); меньше в 1,4 раза, чем сложные фазоманипулированные зондирующие сигналы, используемые в прототипе (см. патент Российской Федерации №2408038 по заявке №2009146996/28 от 17.12.2009 на изобретение «Устройство для геоэлектроразведки с повышенной помехоустойчивостью, чувствительностью и точностью измерений», опубликованный 27.12.2010, бюл. №36, кл. G01V 3/12).

При этом показатель различимости (ПР) у дискретных ортогональных функций Tur(i,θ) больше, чем у сложных фазоманипулированных зондирующих сигналов, использующих функции Уолша, в 11 раз; больше, чем у сложных фазоманипулированных зондирующих сигналов, используемых в аналоге в 1,375 раза (см. патент Российской Федерации №2366983 по заявке №2008114897/28 от 15.04.2008 на изобретение «Устройство для геоэлектроразведки», опубликованный 10.09.2009, бюл. №25, кл. G01V 3/12); больше, чем у сложных фазоманипулированных зондирующих сигналов, используемых в прототипе в 1,222 раза (см. патент Российской Федерации №2408038 по заявке №2009146996/28 от 17.12.2009 на изобретение «Устройство для геоэлектроразведки с повышенной помехоустойчивостью, чувствительностью и точностью измерений», опубликованный 27.12.2010, бюл. №36, кл. G01V 3/12).

Указанные показатели, приведенные в таблице 1, значительно повышают эффективность предлагаемого устройства для геоэлектроразведки за счет использования системы фазоманипулированных сигналов с хорошими автокорреляционными свойствами, приводящими к повышению помехоустойчивости, чувствительности и точности измерений для обнаружения подповерхностных объектов, например газовых и нефтяных залежей, рудных месторождений.

Помимо этого, при перемножении отраженного и зондирующего сигналов в данном устройстве, спектр «сворачивается» в 2n раз. Это дает возможность исключить значительную часть шумов и узкополосных помех за счет корреляционной обработки зондирующих сигналов, в том числе и в районах с высоким уровнем регулярных электрических помех.

Устройство для геоэлектроразведки, содержащее блок управления, блок изменения периода следования модулирующих импульсов, передатчик, антенный переключатель, антенну, приемник, компаратор, состоящий из i элементов (где i - число каналов многоканального коррелятора), блок индикации, многоканальный коррелятор, включающий в себя многоотводную линию задержки, многоканальный перемножитель и многоканальный фильтр нижних частот, блок формирования функций Уолша, группу из 2n перемножителей (где 2n - число фазоманипулированных сигналов с улучшенными автокорреляционными свойствами, входящих в группу последовательностей для составного параллельного сигнала), группу из 2n модуляторов, 2n - входовый сумматор, причем второй выход блока управления подключен к входу блока изменения периода следования модулирующих импульсов, вход антенного переключателя подключен к выходу передатчика, первый выход антенного переключателя подключен к антенне, к второму выходу антенного переключателя подключен приемник, к выходу передатчика подключен первый вход многоканального коррелятора, являющийся входом многоотводной линии задержки, второй вход многоканального коррелятора, являющийся одиночным входом многоканального перемножителя, соединен с выходом приемника, i-е выходы многоотводной линии задержки подключены к i-м входам группы входов многоканального перемножителя, i-е выходы многоканального перемножителя подключены к i-м входам многоканального фильтра низких частот, i-е выходы многоканального фильтра низких частот, являющиеся i-ми выходами многоканального коррелятора, подключены к первым входам i-х элементов компаратора и к вторым входам (i-1)-х элементов компаратора, выходы элементов компаратора подключены к входам блока индикации, первый выход блока управления подключен к тактовому входу блока формирования функций Уолша, вторые входы i-х перемножителей группы из 2n перемножителей подключены к i-м выходам блока формирования функций Уолша, выходы i-х перемножителей группы из 2n перемножителей подключены к первым входам i-х модуляторов группы из 2n модуляторов, вторые входы модуляторов соединены с выходом блока изменения периода следования модулирующих импульсов, выходы модуляторов подключены к входам 2n-входового сумматора, выход которого подключен к входу передатчика, отличающееся тем, что в него введены (n-1)-разрядный двоичный счетчик, (n-1) кольцевых четырехразрядных регистра сдвига, (n-1)-входовый перемножитель, причем выход j-го разряда (n-1)-разрядного двоичного счетчика (где j - порядковый номер разряда (n-1)-разрядного двоичного счетчика) подключен к тактовому входу j-го кольцевого четырехразрядного регистра сдвига, информационный выход j-го кольцевого четырехразрядного регистра сдвига подключен к j-му информационному входу (n-1)-входового перемножителя, информационный выход (n-1)-входового перемножителя соединен с первыми входами всех перемножителей группы из 2n перемножителей.



 

Похожие патенты:

Изобретения относятся к области радиолокации и могут быть использованы для распознавания радиолокационных объектов. Изобретения могут найти применение в радиолокационных станциях кругового обзора (РЛС КО).

Способ дистанционного разминирования относится к области военно-инженерного дела, разминирования и средств борьбы с терроризмом, предназначен для обеспечения безопасности перемещения на маршрутах движения подразделений специальной военной техники, вооружений и автотранспорта.

Изобретение относится к пассивным радиотеплолокационным системам (РТЛС) наблюдения миллиметрового диапазона длин волн, предназначенным для формирования радиотеплового изображения объектов в зоне обзора.

Изобретение относится к области геофизики и может быть использовано для локального прогноза зон рапопроявлений. Сущность: проводят сейсморазведочные работы методом общей глубинной точки.

Изобретение относится к области радиолокации и может быть использовано для осуществления трассового сопровождения подвижных маневрирующих источников радиоизлучений (ИРИ) с помощью однопозиционных систем радиотехнической разведки (СРТР) воздушного базирования.

Изобретение относится к области радиоэлектронной борьбы и предназначено для использования в комплексах радиоэлектронного подавления, в частности может использоваться в аппаратуре радиотехнической защиты летательных аппаратов (ЛА).

Изобретение относится к радиолокации и может быть использовано для обнаружения средств поражения и противодействия им. Достигаемым техническим результатом является расширение функциональных возможностей мобильной трехкоординатной радиолокационной станции (РЛС) обнаружения.

Изобретение относится к радиотеплолокации, а именно к пассивным системам наблюдения за объектами с помощью многоканальных радиотеплолокационных станций (РТЛС) или радиометров со сканирующими антеннами.

Изобретение относится к области электрорадиотехники, а именно к технике связи сверхнизкочастного и крайненизкочастотного диапазона, и может быть использовано для передачи сигналов на глубокопогруженные и удаленные объекты.

Изобретение относится к способам поиска и обнаружения объекта на местности по монохромному цифровому (с градациями яркости в каждом пикселе) изображению этой местности, например по радиолокационному изображению, формируемому в радиолокаторах с синтезированной антенной за счет многократного излучения на интервале синтезирования зондирующего сигнала и формирования при движении летательного аппарата виртуальной синтезированной антенной решетки.
Наверх