Способ и модуль фильтрации грубого заданного значения

Группа изобретений относится к способу фильтрации грубого заданного значения, модулю фильтрации и системе регулирования турбореактивного двигателя, турбореактивному двигателю, оборудованному такой системой. Для фильтрации грубого заданного значения обнаруживают условия фильтрации, выдают фильтрованное заданное значение корректирующему контуру вместо грубого заданного значения при обнаружении условия фильтрации. Модуль фильтрации содержит модуль обнаружения условия фильтрации грубого заданного значения, средства для выдачи грубого заданного значения корректирующему контуру. Система регулирования турбореактивного двигателя содержит модуль фильтрации, корректирующий контур и датчик режима. Обеспечивается уменьшение перерегулирования турбореактивного двигателя. 4 н. и 2 з.п. ф-лы, 6 ил.

 

ПРЕДПОСЫЛКИ К СОЗДАНИЮ ИЗОБРЕТЕНИЯ

Изобретение относится к общей области управления заданным значением в двигателе.

Оно направлено, в частности, на то, чтобы минимизировать проблему перерегулирования, известную, в частности, в системах, функционирующих в режиме автоматического регулирования, при которой управляемая величина временно превышает уровень переменного заданного значения.

Изобретение находит частное, но не ограничивающее, применение в системе регулирования турбореактивного двигателя, роль такой системы заключается в поддержании рабочей точки реактивного двигателя таким образом, чтобы получить тягу, требуемую пилотом.

В самом деле, и, в частности, в области турбореактивных двигателей, необходимо, чтобы иметь возможность абсорбировать это явление перерегулирования, предусмотреть коэффициент безопасности между максимальным режимом, который требуется достичь для получения определенной тяги, и пределами механической стойкости реактивного двигателя, эта переразмеренность приводит к пагубному увеличению массы турбореактивного двигателя.

В области турбореактивных двигателей, принято, чтобы избежать или ограничить явление перерегулирования, играть регулировкой корректирующего контура контроля режима, генерируя команду расхода топлива дозаторам турбореактивного двигателя.

К сожалению, эти способы снижают эффективность корректора, в том числе в фазах работы, для которых первоначальная регулировка была удовлетворительной. Они дополнительно требуют скоростных и относительно дорогих дозаторов, чтобы иметь возможность реагировать на заданные значения, переданные корректирующим контуром.

Изобретение направлено, в частности, на преодоление этих недостатков.

ЦЕЛЬ И СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Настоящее изобретение удовлетворяет эту потребность, предлагая способ фильтрации грубого заданного значения, предназначенного для корректирующего контура в системе регулирования двигателя. Этот способ включает в себя:

- этап обнаружения условия фильтрации грубого заданного значения, и;

- этап выдачи фильтрованного заданного значения корректирующему контуру вместо грубого заданного значения, если обнаружено условие фильтрации.

Таким образом, и в целом, изобретение предлагает решение, направленное на то, чтобы отфильтровать заданное значение перед корректирующим контуром, что позволяет избежать всех проблем свойственных замене или регулировке корректирующего контура.

В частном варианте осуществления изобретения, условие фильтрации подтверждают, когда режим двигателя превышает значение порога защиты.

Этот вариант частного осуществления выгодно позволяет вмешиваться только на очень высоких режимах двигателя, близких к пределам механической стойкости двигателя.

В частном варианте осуществления изобретения:

- фильтрованное заданное значение ограничено значением порога, пока режим двигателя не стабилизируется около фильтрованного заданного значения; и

- фильтрованное заданное значение постепенно увеличивают до достижения грубого заданного значения, как только режим двигателя стабилизируется около фильтрованного заданного значения.

Этот вариант осуществления позволяет ослабить перепады режима в конце ускорения, приближая конечное заданное значение достаточно медленно во избежание превышения («перерегулирования»).

Соответственно, изобретение также предоставляет модуль фильтрации грубого заданного значения, предназначенного для корректирующего контура в системе регулирования двигателя, этот модуль содержит:

- модуль обнаружения условия фильтрации грубого заданного значения, и;

- средства для выдачи корректирующему контуру фильтрованного заданного значения вместо грубого заданного значения, когда обнаружено условие фильтрации.

Изобретение также предоставляет систему регулирования турбореактивного двигателя, содержащую модуль фильтрации, такой как упомянут выше, корректирующий контур, реактивный двигатель и датчик режима.

Изобретение также предлагает турбореактивный двигатель содержащий систему регулирования, такую как описана выше.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Другие особенности и преимущества настоящего изобретения станут очевидными из описания, приведенного ниже, со ссылкой на приложенные чертежи, которые демонстрируют пример, совершенно не ограничивающего характера.

На чертежах:

- Фиг.1 схематически представляет турбореактивный двигатель, соответствующий частному варианту осуществления изобретения;

- фиг.2 представляет систему регулирования, соответствующую частному варианту осуществления изобретения;

- фиг.3 представляет принцип фильтрации заданного значения, соответствующий частному варианту осуществления изобретения;

- фиг.4 схематично показывает модуль фильтрации, соответствующий частному варианту осуществления изобретения;

- фиг.5 схематично показывает ограничитель перепада, который может быть использован в модуле фильтрации по фиг.4; и

- фиг.6 представляет в виде функциональной диаграммы основные этапы способа фильтрации заданного значения, соответствующего частному варианту осуществления изобретения.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Фиг.1 схематически показывает турбореактивный двигатель 1 летательного аппарата, соответствующий частному варианту осуществления изобретения.

Известным образом, этот турбореактивный двигатель с продольной осью X-X включает в себя, в частности, вентилятор 42, который доставляет поток воздуха в тракт 44 течения первичного потока и в тракт 46 течения вторичного потока, коаксиальный тракту течения первичного потока.

От входа к выходу, в направлении течения через него газового потока, тракт 44 течения первичного потока содержит компрессор 48 низкого давления, компрессор 50 высокого давления, камеру сгорания 52, турбину 54 высокого давления и турбину 56 низкого давления.

Турбореактивный двигатель 1 регулируют системой 20 регулирования, в соответствии с изобретением, показанной на фиг.2. Главным образом, эта система регулирования определяет заданное значение расхода топлива WF32C и управляет впрыском топлива в турбореактивный двигатель в зависимости от определенного заданного значения расхода топлива.

В описанном здесь варианте осуществления, эта система 20 регулирования включает в себя модуль 5 фильтрации, в соответствии с изобретением, корректирующий контур 6, реактивный двигатель 7 и датчик режима 8.

Известным образом, корректирующий контур 6 предоставляет заданное значение расхода топлива WF32C реактивному двигателю 7 в зависимости от разности между заданным значением N1_CMD_LIM режима двигателя и измерением N1_MES режима двигателя определенным датчиком 8 режима.

Примечательно, что заданное значение N1_CMD_LIM режима двигателя, определенное модулем 5 фильтрации, является фильтрованным заданным значением при приближении пределов механической стойкости турбореактивного двигателя 1.

В описанном здесь варианте осуществления, модуль фильтрации 5 определяет фильтрованное заданное значение N1_CMD_LIM режима двигателя в зависимости от грубого заданного значения режима двигателя N1_CMD_OP, пропорционального положению ручки 4 управления, контролируемой пилотом летательного аппарата, и измерению N1_MES режима двигателя, определенному датчиком режима.

Фиг.3 иллюстрирует принцип работы модуля 5 фильтрации. На этой фигуре:

- Ось абсцисс является осью времени t;

- Ось ординат представляет режим двигателя, именно в этом примере, скорость вращения каскада высокого давления 50, 54;

- Предел N1MAX режима двигателя, определенный механическими характеристиками турбореактивного двигателя;

- Грубое заданное значение режима двигателя N1_CMD_OP;

- Фильтрованное заданное значение двигателя N1_CMD_LIM; и

- Измерение N1_MES режима двигателя.

Согласно изобретению, фильтрованное заданное значение N1_CMD_LIM режима двигателя регулируется в три этапа, а именно:

- первый этап, называется «этап без защиты (PNP)», пока грубое заданное значение режима двигателя N1_CMD_OP ниже порога SEUIL_PROT защиты, этап, во время которого фильтрованное заданное значение N1_CMD_LIM точно соответствует грубому заданному значению N1_CMD_OP, никакой коррекции грубого заданного значения не осуществляется;

- второй этап, называемый «этап стабилизации (PSTAB)», во время которого приводят фильтрованное заданное значение N1_CMD_LIM режима двигателя к значению порога SEUIL_PROT защиты, когда грубое заданное значение N1_CMD_OP режима двигателя превышает этот порог SEUIL_PROT защиты, и пока режим двигателя N1_MES не стабилизируются около ограниченного заданного значения N1_CMD_LIM режима двигателя;

- третий этап, называемый «этап умеренного ускорения (PAM)», во время которого, постепенно подводят ограниченное заданное значение N1_CMD_LIM режима двигателя до достижения грубого заданного значения N1_CMD_OP режима двигателя согласно умеренно линейно нарастающей функции RMP, как только режим двигателя N1_MES стабилизируется около фильтрованного заданного значения N1_CMD_LIM во время DSTAB стабилизации.

В описанном здесь примере осуществления, длительность DSTAB стабилизации выбирается порядка 0,5с, а линейно нарастающая функция RMP является перепадом порядка 200 об/с, позволяя достигнуть номинальный уровень управления около 0,8с.

Фиг.4 представляет модуль фильтрации согласно частному варианту осуществления изобретения.

В последующем описании рассматриваются дискретизированные сигналы и параметры с периодом дискретизации Te. Этот период дискретизации, например, имеет порядок от 20 до 40 мс.

Тем не менее, следует отметить, что изобретение также может быть осуществлено с непрерывными сигналами и параметрами.

Как описано ранее, модуль 5 фильтрации получает на вход грубое заданное значение режима N1_CMD_OP двигателя и измерение N1_MES режима двигателя; на выходе он выдает фильтрованное заданное значение N1_CMD_LIM режима двигателя.

В описанном здесь варианте осуществления модуль 5 фильтрации содержит ограничитель 52 перепада, описанный далее со ссылкой на фиг.5, способный возвращать значение N1_LIM_OVSH соответствующее уже описанным этапам без защиты PNP, стабилизации PSTAB, и умеренного ускорения PAM. В частности, значение N1_LIM_OVSH:

- равно порогу SEUIL_PROT защиты в течение этапов без защиты PNP и стабилизации PSTAB;

- постепенно увеличивается от порога SEUIL_PROT защиты вплоть до грубого заданного значения N1_CMD_OP режима двигателя согласно линейно нарастающей функции RMP, во время этапа умеренного ускорения PAM.

В описанном здесь варианте осуществления, фильтрованное заданное значение N1_CMD_LIM режима двигателя является минимумом между значением N1_LIM_OVSH возвращенным ограничителем 52 перепада и грубого заданного значения N1_CMD_OP режима двигателя (модуль 53 MIN, фиг. 4).

Модуль 5 фильтрации включает в себя модуль 54, выполненный с возможностью определять стабилизировался ли режим двигателя N1_MES около фильтрованного заданного значения N1_CMD_LIM режима двигателя во время DSTAB, необходимое условие этапа стабилизации PSTAB.

В описанном здесь варианте осуществления этот модуль 54 включает в себя:

- вычитающее устройство 540, выполненное с возможностью получения разности между измерением N1_MES(n) режима двигателя и фильтрованного заданного значения N1_CMD_LIM(n-1) режима двигателя при предыдущем дискретном значении (замедляющий элемент 57, фиг.4);

- элемент 542, известный специалистам в данной области, выполненный с возможностью определения абсолютного значения этой разности;

- компаратор 544, выполненный с возможностью сравнения это абсолютного значения с порогом SEUIL_STAB стабилизации близким к нулю; и

- счетчик 546, выполненный с возможностью отправки сигнала N1_STAB со значением VRAI(истина), если вход I счетчика 546 является VRAI во время DSTAB.

Ограничитель 52 перепада описан со ссылкой на фиг. 5. Он получает на вход:

- значение перепада GMAX, определенное распределителем 56 перепада, равное 0, когда режим двигателя N1_MES не стабилизирован (N1_STAB=FAUX (ложь)), и значению угла наклона линейно нарастающей функции GRAMP, когда режим двигателя стабилизировался (N1_STAB=VRAI(истина)); и

- значение e максимума между грубым заданным значением N1_CMD_OP режима двигателя и порогом SEUIL_PROT защиты (модуль MAX 57, фиг.4). При запуске системы, таким образом, значение e будет SEUIL_PROT.

Ограничитель 52 перепада содержит замедляющий элемент 520 инициализированный на пороге SEUIL_PROT, выполненный с возможностью предоставления значения выходного сигнала предыдущего дискретного значения N1_LIM_OVSH(n-1).

Ограничитель 52 перепада содержит вычитающий модуль 522, выполненный с возможностью рассчитать разницу между входным значением и N1_LIM_OVSH(n-1). Таким образом, в течение всего этапа без защиты PNP, выход вычитающего модуля 522 равен 0.

Ограничитель 52 перепада содержит модуль 524, выполненный с возможностью определения минимума между выходом вычитающего модуля 522 и значением GMAX равным 0, если режим двигателя не стабилизировался.

Ограничитель перепада содержит модуль-сумматор 526, выполненный с возможностью предоставления выходного сигнала N1_LIM_OVSH(n), суммируя выходной сигнал модуля 524 со значением выходного сигнала предыдущего дискретного значения N1_LIM_OVSH(n-1).

Таким образом, в течение всего этапа без защиты PNP, выходной сигнал N1_LIM_OVSH равен порогу SEUIL_PROT защиты.

Когда грубое заданное значение N1_CMD_OP режима двигателя превышает порог SEUIL_PROT защиты, выходной сигнал вычитающего модуля 522 становится положительным.

Но на протяжении всего этапа PSTAB стабилизации, значение перепада GMAX, определенное распределителем 56 перепада остается нулевым, так что выходной сигнал N1_LIM_OVSH остается равным порогу SEUIL_PROT защиты.

Как только режим двигателя N1_MES стабилизируется около фильтрованного заданного значения N1_CMD_LIM режима двигателя, значение перепада GMAX принимает значение угла наклона линейно нарастающей функции GRAMP так, что выходной сигнал N1_LIM_OVSH последовательно возрастает от значения порога SEUIL_PROT вплоть до грубого заданного значения N1_CMD_OP, в соответствии с линейной нарастающей функцией RMP этапа умеренного ускорения PAM.

Фиг.6 соответственно представляет способ фильтрации заданного значения согласно частному варианту осуществления изобретения.

Этот способ включает в себя этап E10 во время которого проверяют подтверждается ли условие фильтрации грубого заданного значения. В описанном здесь варианте осуществления, это заключается в проверке больше ли грубое заданное значение N1_CMD_OP порога SEUIL_PROT защиты. Если это не так, то грубое заданное значение отправляется в корректирующий контур 6 без модификации.

Если обнаружено условие фильтрации, проверяют, во время этапа E20, стабилизировался ли режим двигателя N1_MES около фильтрованного значения N1_CMD_LIM. Если это не так, то фильтрованное заданное значение, отправленное в корректирующий контур 6 ограничено значением порога SEUIL_PROT защиты (этап E30).

Как только режим двигателя N1_MES стабилизировался около фильтрованного заданного значения N1_CMD_LIM, последовательно увеличивают фильтрованное заданное значение N1_CMD_LIM вплоть до достижения грубого заданного значения N1_CMD_OP (этап E40).

1. Способ фильтрации грубого заданного значения (N1_CMD_OP), предназначенного для корректирующего контура (6) в системе (20) регулирования двигателя (1), при этом упомянутый способ отличается тем, что включает в себя:

- этап (E10) обнаружения условия фильтрации упомянутого грубого заданного значения и

- этап (E30, E40) выдачи фильтрованного заданного значения (N1_CMD_LIM) указанному корректирующему контуру (6) вместо грубого заданного значения, если обнаружено условие фильтрации.

2. Способ фильтрации согласно п.1, отличающийся тем, что условие фильтрации подтверждают, когда грубое заданное значение (N1_CMD_OP) превышает значение порога (SEUIL_PROT) защиты.

3. Способ фильтрации согласно п. 1 или 2, отличающийся тем, что:

- фильтрованное заданное значение (N1_CMD_LIM) ограничено значением порога (SEUIL_PROT), пока режим двигателя не стабилизируется около фильтрованного заданного значения (N1_CMD_LIM); и

- фильтрованное заданное значение (N1_CMD_LIM) постепенно увеличивают до достижения грубого заданного значения (N1_CMD_OP), как только режим двигателя стабилизируется около фильтрованного заданного значения.

4. Модуль (5) фильтрации грубого заданного значения (N1_CMD_OP), предназначенного для корректирующего контура (6) в системе (20) регулирования двигателя, при этом упомянутый модуль отличается тем, что он включает в себя:

- модуль (54) обнаружения условия фильтрации упомянутого грубого заданного значения и

- средства для выдачи упомянутому корректирующему контуру фильтрованного заданного значения (N1_CMD_LIM) вместо упомянутого грубого заданного значения, когда обнаружено условие фильтрации.

5. Система (20) регулирования турбореактивного двигателя (1), содержащая модуль (5) фильтрации по п.4, корректирующий контур (6) и датчик режима (8).

6. Турбореактивный двигатель (1), оборудованный системой регулирования (20) согласно п.5.



 

Похожие патенты:

Изобретение относится к области передачи с избыточностью дейтаграмм данных между устройствами автоматизации установки автоматизации с сетью связи с кольцевой топологией.

Изобретение относится к средствам управления технологическими процессами. Технический результат заключается в расширении арсенала средств того же назначения.

Изобретение относится к электротехнике. В способе резервирования каналов связи и технологических устройств измерения, анализа, мониторинга и управления оборудованием электрической подстанции, на первом этапе соединяют в сеть интеллектуальные технологические устройства и сетевые коммутаторы.

Использование: в области электротехники. Технический результат – обеспечение оптимального размещения устройств защиты в энергораспределительной сети.

Изобретение относится к управлению производственным процессом. Многокоординатный цифровой интерполятор содержит блок программы, счетчик приращений, блок задания скорости, одноразрядные сумматоры и блоки двухкоординатной интерполяции.

Изобретение относится к процессам производства. Производственный модуль для выполнения производственной функции над продуктом выполнен и настроен для связывания со вторым производственным модулем, который выполнен и настроен для выполнения второй производственной функции над продуктом.

Изобретение относится к автоматическому регулированию. Система связи управления удаленными объектами содержит соединенные прямую и передаточную среду, идентификатор, формирователь регулирующего воздействия.

Группа изобретений относится к системам, управляемым вычислительными устройствами. Способ для регулирования режима интеллектуального холодильника заключается в том, что получают список пользователей для приема пищи, получают первый ингредиент, используемый в приеме пищи, и период обработки для обработки первого ингредиента в холодильнике согласно списку пользователей, определяют первый момент времени извлечения первого ингредиента из холодильника и регулируют рабочий режим холодильника согласно периоду обработки и первому моменту времени.

Группа изобретений относится к технике автоматизации. Технический результат – создание средств безопасного и оптимального обмена данными в автоматизации.

Способ управления полевым устройством включает обнаружение аппаратным модулем возникновения аварийного происшествия, связанного с полевым устройством, отмену аппаратным модулем нормального управления полевым устройством для перевода полевого устройства в безопасное состояние в ответ на обнаруженное возникновение аварийного происшествия, причем отмена нормального управления полевым устройством включает то, что аппаратный модуль вырабатывает аппаратный сигнал управления; обнаружение программным модулем возникновения аварийного происшествия, связанного с полевым устройством; отслеживание программным модулем отмены нормального управления полевым устройством посредством отслеживания аппаратного сигнала управления, выработанного аппаратным модулем; проверка программным модулем отмены нормального управления полевым устройством посредством сравнения сигнала безопасного состояния с отслеженным аппаратным сигналом управления; и передача программным модулем программного сигнала управления для перевода полевого устройства в безопасное состояние.

Изобретение относится к системам автоматического регулирования, а конкретно, к приводам наведения артиллерийского вооружения подвижных объектов. Следящий привод содержит сумматор, усилитель, исполнительный привод, датчик углового положения нагрузки, компаратор, схему И, коммутатор, а также дополнительно введен формирователь фиксированного значения угла, выход которого соединен с нормально-разомкнутым входом коммутатора, сигнал управления подключен к нормально-замкнутому входу коммутатора, а выход коммутатора соединен со вторым входом сумматора.

Исполнительная система для самолета, содержащая электромеханический исполнительный механизм (25), содержащий энергонезависимую память (60), в которой хранятся сохраняемые данные (61), включающие в себя данные (62) о конфигурации, относящиеся к указанному электромеханическому исполнительному механизму; управляющий блок (22), использующий указанные данные о конфигурации, для того чтобы реализовать цикл серворегулирования, при этом выходной сигнал представляет собой цифровой сигнал, управляющий электродвигателем указанного электромеханического исполнительного механизма; по меньшей мере один канал (50) передачи цифровой информации соединяет управляющий блок и электромеханический исполнительный механизм.

Изобретение относится к способу работы устройства (1) автоматизации, предпочтительно секции (1а) автоматизации, с манипулятором (2а, b) и модулем (3а, b) ввода-вывода для автоматизированного производства, а также с вычислительным устройством (5).

Изобретение относится к области электротехники, может быть использовано для управления электроприводами постоянного тока, применяемыми в опорно-поворотных устройствах, металлообрабатывающих станках, механизмах металлургического производства.

Изобретение относится к области электротехники и может быть использовано в следящих системах автоматического управления и регулирования для формирования управляющих сигналов в системе с вентильным двигателем.

Представлена система регулирования уровня жидкости в технологической установке. Система регулирования уровня жидкости содержит: подвижный узел, содержащий стержень, при этом стержень подвижного узла включает в себя ближний конец и дальний конец; поплавок, прикрепленный к дальнему концу стержня; приводной механизм, функционально связанный с подвижным узлом; процессор, связанный с приводным механизмом и выполненный с возможностью перемещения поплавка с помощью подвижного узла; датчик, содержащий вход и выход, причем вход датчика функционально связан с подвижным узлом для приема входного сигнала, представляющего характеристику поплавка или рабочей среды, а выход датчика функционально связан с процессором для создания выходного сигнала, связанного с входным сигналом; запоминающее устройство, связанное с процессором; приводящий в действие модуль, сохраненный в запоминающем устройстве, который, будучи выполняемым в процессоре, приводит в действие приводной механизм; устройство вывода данных, соединенное с процессором, и демонстрирующий модуль, сохраненный в запоминающем устройстве, который, будучи выполняемым в процессоре, демонстрирует выходной сигнал датчика на устройстве вывода данных.

Изобретение относится к разделу управления и может быть использовано при регулировании параметров сложных электромеханических систем, например электроприводов постоянного и переменного тока.

Изобретение относится к разделу управления и может быть использовано при регулировании параметров сложных электромеханических систем, например электроприводов постоянного и переменного тока.

Изобретение относится к области электротехники, в частности к позиционным электроприводам постоянного тока, и может быть использовано для автоматизации металлорежущих станков, электромеханических роботов, управления аэродинамическими рулями и в других механизмах систем радиотехники, автоматики и вычислительной техники.

Изобретение относится к области электротехники, в частности к позиционным электроприводам постоянного тока, и может быть использовано для автоматизации металлорежущих станков, электромеханических роботов, управления аэродинамическими рулями и в других механизмах систем радиотехники, автоматики и вычислительной техники.

Изобретение относится к области автоматического регулирования газотурбинного двигателя (ГТД), а именно к системам управления режимами работы форсажной камеры сгорания с адаптивной системой подачи топлива.
Наверх