Способ получения фторида водорода из водного раствора гексафторкремниевой кислоты

Изобретение относится к технологии неорганических веществ. Способ получения фторида водорода из водного раствора гексафторкремниевой кислоты включает смешение указанного раствора с раствором серной кислоты, последующую десорбцию фторида водорода из образовавшегося раствора серной кислоты, его обработку серной кислотой, конденсацию из непоглощенных газов безводного фторида водорода. Раствор гексафторкремниевой кислоты смешивают при температуре 100-190°С с серной кислотой концентрацией не менее 71 масс. % в количестве не менее (0,7⋅(100-а))/(x-70) грамм на 1 грамм раствора гексафторкремниевой кислоты в растворе, где х - концентрация серной кислоты, %, а - концентрация раствора гексафторкремниевой кислоты, %. Образовавшиеся газообразные продукты реакции сжигают в пламени водородсодержащего топлива и кислородсодержащего окислителя. Из реакционных продуктов выделяют твердый диоксид кремния. Оставшиеся продукты охлаждают и выделяют сконденсировавшийся безводный фторид водорода. Изобретение позволяет снизить количество образующихся отходов, а также затраты на проведение процесса получения фторида водорода, 1 з.п. ф-лы, 1 ил., 2 пр.

 

Изобретение относится к технологии неорганических веществ, а именно к получению безводного фторида водорода (БФВ) из водного раствора гексафторкремниевой кислоты (ГФКК).

БФВ находит широкое применение в промышленности. Его используют при осуществлении различных химико-технологических процессов, например, при производстве фторсодержащих хладагентов, гексафторида урана и т.п. ГФКК обычно образуется в качестве побочного продукта при производстве фосфорной кислоты или фосфатных удобрений, в виде водного раствора, содержащего 10-20 масс. % H2SiF6.

Известен способ получения БФВ путем переработки ГФКК [Патент США 4062930, МПК С01В 7/22, опубл. 13.12.1977], согласно которому ГФКК подвергают воздействию концентрированной серной кислоты при температуре 150-170°С.

В результате протекает реакция (1):

Образовавшиеся газообразные продукты разделяют с помощью селективной абсорбции серной кислотой. Фторид водорода растворяется в серной кислоте с образованием фторсульфоновой кислоты по реакции (2):

Реакция (2) обратима, и ее равновесие зависит от температуры раствора и содержания в нем воды. Таким образом, абсорбированный серной кислотой фторид водорода выделяют из раствора при температуре выше 150°С, после чего его конденсируют и собирают в сборнике.

Оставшийся после стадии абсорбции тетрафторид кремния направляют в рецикл, смешивая с исходным раствором ГФКК, в результате чего тетрафторид кремния взаимодействует с водой, входящей в раствор, по уравнению реакции (3):

Образовавшийся диоксид кремния, содержащий примесь фтор-иона, отфильтровывают и направляют на захоронение, как отход, а раствор ГФКК направляют на обработку серной кислотой. Недостатками данного способа являются, во-первых, образование отхода диоксида кремния, а во-вторых, то, что выделяемая из водного раствора гелеобразная суспензия диоксида кремния требует энергоемкой стадии фильтрации и использования воды для промывки фильтрата, после чего промывочная вода также подается на обработку серной кислотой вместе с исходной ГФКК.

Наиболее близким техническим решением является способ [Dahlke Т., Ruffiner О., Cant R., Production of HF from H2SiF6, Procedia Engineering, 138, 231-239 (2016)], в основе которого лежит также, как и в предыдущем описанном способе, принцип разложения серной кислотой водного раствора ГФКК с выделением фторида водорода и тетрафторида кремния. При этом тетрафторид кремния, фторид водорода и воду разделяют с помощью селективного поглощения серной кислотой. Выделенный тетрафторид кремния направляют на его гидролиз разбавленным раствором ГФКК. Однако отличием является то, что при смешении концентрированной серной кислоты и ГФКК газообразные продукты реакции преимущественно содержат тетрафторид кремния, а фторид водорода преимущественно поглощается серной кислотой в реакторе смешения, которую направляют на десорбцию. Выделение фторида водорода из раствора, содержащего серную кислоту, осуществляют в десорбере, где этот раствор нагревают, в результате чего растворенная в нем фторсульфоновая кислота разлагается. Затем содержимое обрабатывают водяным паром и воздухом в отпарочной колонне для наиболее полного удаления примеси фторида водорода из серной кислоты. Образовавшийся по реакции (1) тетрафторид кремния направляют в реактор гидролиза, где его смешивают с исходным раствором ГФКК, где он гидролизуется с образованием диоксида кремния.

Основным недостатком описанного способа является то, что при его осуществлении образуется гелеобразная суспензия диоксида кремния, требующая фильтрации. Фильтрация суспензии приводит к увеличению расхода электроэнергии и промывочной воды. Таким образом, можно выделить несколько недостатков способа: во-первых, повышенная энергоемкость процесса, во-вторых, увеличение потребления концентрированной серной кислоты, в третьих, образование отхода диоксида кремния, загрязненного фтор-ионом.

Техническим результатом, достигаемым в результате осуществления предлагаемого изобретения, является извлечение фторида водорода из водного раствора ГФКК при снижении энерго- и ресурсоемкости процесса, снижение количества образующихся отходов.

Сущность предлагаемого решения состоит в том, что разработан способ получения фторида водорода из водного раствора гексафторкремниевой кислоты, включающий смешение раствора гексафторкремниевой кислоты с раствором серной кислоты, последующую десорбцию фторида водорода из образовавшегося раствора серной кислоты, его обработку серной кислотой и конденсацию из не поглощенных газов безводного фторида водорода, при этом раствор гексафторкремниевой кислоты смешивают при температуре 100-190°С с серной кислотой концентрацией не менее 71 масс. % в количестве не менее (0,7⋅(100-а))/(x-70) грамм на 1 грамм раствора гексафторкремниевой кислоты в растворе, где х - концентрация серной кислоты, %, а - концентрация раствора гексафторкремниевой кислоты, %, затем образовавшиеся газообразные продукты реакции сжигают в пламени водородсодержащего топлива и кислородсодержащего окислителя, после чего из реакционных продуктов выделяют твердый диоксид кремния, а оставшиеся продукты охлаждают и выделяют сконденсировавшийся безводный фторид водорода.

Возможен вариант развития основного технического решения, заключающийся в том, что газообразные продукты реакции предварительно обрабатывают концентрированной серной кислотой концентрацией не менее 71 масс. %, после чего не поглощенные газы направляют на сжигание, а отработанную серную кислоту возвращают на стадию смешения с раствором гексафторкремниевой кислоты.

Таким образом, заявленной совокупностью существенных признаков достигается указанный технический результат: во-первых, снижается энергоемкость процесса благодаря использованию стадии сжигания образовавшегося тетрафторида кремния, во-вторых, сжигание тетрафторида кремния влечет за собой отсутствие отхода диоксида кремния, загрязненного фтор-ионом, в-третьих, потребление серной кислоты снижается в связи с использованием заданного соотношения раствора ГФКК и серной кислоты.

Указанное соотношение исходных компонентов (серной кислоты и раствора ГФКК), полученное экспериментально, после смешения и протекания реакции разложения ГФКК с выделением фторида водорода и тетрафторида кремния обеспечивает концентрацию серной кислоты после взаимодействия не менее чем 70 масс. %.

За счет протекания реакций (1) и (2) выделяются газообразные продукты реакции, состоящие из тетрафторида кремния, фторида водорода и паров воды. При этом указанная начальная концентрация серной кислоты обеспечивает разложение ГФКК и выделение в газовую фазу минимального количества паров воды. Температура взаимодействия должна быть не ниже 100°С, что обеспечивает разложение ГФКК на тетрафторид кремния и фторид водорода, но и не выше 190°С с целью предотвращения выделения вместе с газоообразными продуктами реакции паров серной кислоты и повышенного количества паров воды.

При этом обработка газообразных продуктов реакции серной кислотой перед сжиганием позволяет снизить нагрузку на стадии сжигания в пламени, предварительно поглотив из газообразных продуктов реакции фторид водорода и воду. Снижение нагрузки на стадии сжигания позволяет дополнительно сократить ресурсопотребление процесса извлечения фторида водорода из водного раствора ГФКК за счет снижения количества подаваемых метана и кислорода.

Выделение фторида водорода из водного раствора ГФКК проводят на установке, схема которой изображена на чертеже, где

1 - реактор,

2 - абсорбер,

3 - высокотемпературный реактор,

4 - десорбер,

5 - разделительная колонна,

6 - конденсатор,

7 - фильтр,

8 - конденсатор фторида водорода,

9 - ректификационная колонна.

Способ проводят следующим образом.

Исходный водный раствор ГФКК смешивают с серной кислотой концентрацией не менее 71 масс. % при температуре 100-190°С в реакторе 1. При этом выбирают соотношение между серной кислотой и раствором ГФКК, что бы на один грамм раствора ГФКК приходилось не менее (0,7⋅(100-а))/(x-70) грамм серной кислоты. За счет протекания реакций (1) и (2) выделяются газообразные продукты реакции, состоящие из тетрафторида кремния, фторида водорода и паров воды. Газообразные продукты реакции направляют на обработку серной кислотой концентрацией не менее 71 масс. % в абсорбер 2. При обработке серной кислотой из газового потока улавливают пары воды и фторид водорода, а оставшийся поток тетрафторида кремния направляют на сжигание в пламени водородсодержащего топлива и кислородсодержащего окислителя в высокотемпературный реактор 3.

Оставшуюся после смешения серной кислоты и раствора ГФКК разбавленную серную кислоту с растворенными в ней фторсульфоновой кислотой и фторидом водорода очищают от растворенного в ней фторида водорода известными способами, например, нагреванием, с разложением фторсульфоновой кислоты по реакции (2) и десорбцией фторида водорода и остаточного количества тетрафторида кремния в десорбере 4. В результате после десорбции получают серную кислоту с содержанием фтора в пересчете на фторид водорода не более 1 масс. %. Образующиеся при десорбции газообразные продукты, состоящие из фторида водорода, паров воды и тетрафторида кремния, направляют на обработку концентрированной серной кислотой в разделительную колонну 5. При обработке серной кислотой происходит улавливание из потока паров воды и частично фторида водорода. После чего оставшийся газообразный поток, состоящий из фторида водорода и тетрафторида кремния, охлаждают в конденсаторе 6. При этом безводный фторид водорода конденсируют и направляют на дальнейшее использование, а тетрафторид кремния объединяют с тетрафторидом кремния со стадии поглощения серной кислотой газообразных продуктов выделившихся из раствора ГФКК и направляют на сжигание в пламени водородсодержащего топлива и кислородсодержащего окислителя в высокотемпературный реактор 3. Потоки отработанной серной кислоты, образующиеся после обработки газообразных потоков, подают на смешение с исходной ГФКК в реактор 1.

Благодаря горению топлива и окислителя в высокотемпературном реакторе 3 создают необходимую температуру для осуществления реакции (4):

Из продуктов сгорания отделяют на фильтре 7 твердый высокодисперсный диоксид кремния, после чего обеспыленные продукты сгорания охлаждают в конденсаторе фторида водорода 8, причем происходит конденсация фторида водорода и воды и далее из полученной смеси выделяют безводный фторид водорода при помощи ректификации на ректификационной колонне 9 и его объединяют с безводным фторидом водорода из конденсатора 6.

Способ позволяет извлекать безводный фторид водорода из водного раствора ГФКК, при этом достигается заявленный технический результат: во-первых, снижается энергоемкость процесса благодаря отказу от использования стадии фильтрации суспензии, во-вторых, отказ от стадии фильтрации приводит к отсутствию отхода диоксида кремния, загрязненного фтор-ионом, в-третьих, потребление серной кислоты снижается в связи с использованием заданного соотношения раствора ГФКК и серной кислоты.

Примеры осуществления способа.

Пример 1.

Исходный водный раствор ГФКК концентрацией 15 масс. % подавали с расходом 500 мг/с в реактор 1, куда также подавали серную кислоту из аппаратов 2 и 5, а также серную кислоту концентрацией 93 масс. % с, при этом суммарный общий расход серной кислоты, поступающей в реактор был 1295 мг/с, что определено по соотношению (0,7⋅(100-а))/(x-70) грамм на 1 грамм раствора гексафторкремниевой кислоты в растворе, где x - концентрация серной кислоты, %, а - концентрация раствора гексафторкремниевой кислоты, %, а именно после подстановке в формулу получаем: 0,7⋅(100-15)/(93-70)=2,59. В реакторе 1 происходило смешение компонентов при температуре 170°С. Газообразные продукты реакции направляли в абсорбер 2, орошаемый серной кислотой концентрацией 93 масс. % с расходом 135 мг/с. В абсорбере 2 из газового потока улавливали пары воды и фторид водорода, а оставшийся поток тетрафторида кремния с расходом 51 мг/с направляли в высокотемпературный реактор 6, куда также подавали метан и кислород.

Из реактора 1 выводили разбавленную серную кислоту с растворенными в ней фторсульфоновой кислотой и фторидом водорода. Указанную серную кислоту подавали в десорбер 4, в котором ее нагревали до температуры 180°С, при этом происходило разложение фторсульфоновой кислоты, десорбция фторида водорода и остаточного тетрафторида кремния. Образующиеся газообразные продукты из десорбера 4, состоящие из фторида водорода, паров воды и тетрафторида кремния направляли в разделительную колонну 5 с расходом 74 мг/с, орошаемую серной кислотой концентрацией 93 масс. % и расходом 65 мг/с. После чего газообразный поток, состоящий из фторида водорода и тетрафторида кремния с расходом 10 мг/с, направляли в конденсатор 6, где его охлаждали, фторид водорода конденсировали, после чего несконденсировавшийся тетрафторид кремния объединяли с тетрафторидом кремния из абсорбера 2 и направляли на высокотемпературную обработку с суммарным расходом 54,2 мг/с в пламени метана и кислорода в реактор 3. При этом разбавленная серная кислота из десорбера 4 концентрацией 70 масс. % содержала не более 1 масс. % фторида водорода в пересчете на фтор.

Объединенный поток газов из конденсатора 6 и абсорбера 2 подавали в высокотемпературный реактор 3, куда также подавали метан и кислород с расходами 8,3 мг/с и 33 мг/с, соответственно. Продукты сгорания из высокотемпературного реактора подавали на фильтр 7, где отделяли твердый высокодисперсный диоксид кремния, в количестве 26 мг/с, после чего обеспыленные продукты сгорания подавали в конденсатор фторида водорода 8, где конденсировался фторид водорода и вода и далее из полученной смеси выделяли безводный фторид водорода при помощи ректификации в колонне 9. Остальные газы направляли на санитарную обработку.

Пример 2.

Исходный водный раствор ГФКК концентрацией 25 масс. % подавали с расходом 100 мг/с в реактор 1, куда подавали серую кислоту концентрацией 90 масс. % с расходом 227,5 мг/с, а также подавали серную кислоту из аппарата 5. Общий расход серный кислоты составил 262,5 мг/с, что определено по соотношению (0,7⋅(100-а))/(x-70) грамм на 1 грамм раствора гексафторкремниевой кислоты в растворе, где x - концентрация серной кислоты, %, а - концентрация раствора гексафторкремниевой кислоты, %, а именно после подстановке в формулу получаем: 0,7⋅(100-25)/(90-70)=2,625. В реакторе 1 смешивали компоненты при температуре 115°С. Газообразные продукты реакции направляли в высокотемпературный реактор 3, куда также подавали метан и кислород.

Из реактора 1 выводили разбавленную серную кислоту с растворенными в ней фторсульфоновой кислотой и фторидом водорода. Указанную серную кислоту подавали в десорбер 4, в котором происходил ее нагрев до температуры 180°С, разложение фторсульфоновой кислоты, десорбция фторида водорода и остаточного тетрафторида кремния. Образующиеся газообразные продукты из десорбера, состоящие из фторида водорода, паров воды и тетрафторида кремния направляли в разделительную колонну 5 с расходом 32 мг/с, орошаемую серной кислотой концентрацией 90 масс. % и расходом 35 мг/с. После чего газообразный поток, состоящий из фторида водорода и тетрафторида кремния с расходом 6 мг/с, направляли в конденсатор 6, где он охлаждался, фторид водорода конденсировался, а тетрафторид кремния объединяли с тетрафторидом кремния из реактора 1 и направляли на высокотемпературную обработку с суммарным расходом 18 мг/с в пламени метана и кислорода в реактор 3. При этом разбавленная серная кислота из десорбера 4 концентрацией 70 масс. % содержала не более 1 масс. % фторида водорода в пересчете на фтор.

Объединенный поток газов из конденсатора 6 и реактора 1 поступал в высокотемпературный реактор 3, куда также подавали метан и кислород. Продукты сгорания из высокотемпературного реактора подавали на фильтр 7, где отделяли твердый высокодисперсный диоксид кремния, в количестве 26 мг/с, после чего обеспыленные продукты сгорания подавали в конденсатор фторида водорода 8, где конденсировали фторид водорода и воду и далее из полученной смеси выделяли безводный фторид водорода при помощи ректификации на колонне 9. Остальные газы направляли на санитарную обработку.

Как видно из приведенных данных, решена проблема, стоявшая перед авторами изобретения, а именно - создан способ переработки ГФКК с получением БФВ, позволяющий получать в качестве побочного продукта высокодисперсный диоксид кремния, находящий широкое применение во многих отраслях промышленности (изготовление наполненных резин, стабилизация суспензий и т.п.), также избежать энергозатратной операции фильтрования образующегося кремнегеля.

1. Способ получения фторида водорода из водного раствора гексафторкремниевой кислоты, включающий смешение раствора гексафторкремниевой кислоты с раствором серной кислоты, последующую десорбцию фторида водорода из образовавшегося раствора серной кислоты, его обработку серной кислотой и конденсацию из непоглощенных газов безводного фторида водорода, отличающийся тем, что раствор гексафторкремниевой кислоты смешивают при температуре 100-190°С с серной кислотой концентрацией не менее 71 масс. % в количестве не менее (0,7⋅(100-а))/(х-70) грамм на 1 грамм раствора гексафторкремниевой кислоты в растворе, где х - концентрация серной кислоты, %, а - концентрация раствора гексафторкремниевой кислоты, %, затем образовавшиеся газообразные продукты реакции сжигают в пламени водородсодержащего топлива и кислородсодержащего окислителя, после чего из реакционных продуктов выделяют твердый диоксид кремния, а оставшиеся продукты охлаждают и выделяют сконденсировавшийся безводный фторид водорода.

2. Способ по п. 1, отличающийся тем, что газообразные продукты реакции предварительно обрабатывают серной кислотой концентрацией не менее 71 масс. %, после чего непоглощенные газы направляют на сжигание, а отработанную серную кислоту возвращают на стадию смешения с раствором гексафторкремниевой кислоты.



 

Похожие патенты:
Изобретение относится к области химической технологии и предназначено для утилизации отходов производства, содержащих фторсиликаты: тетрафторид кремния, кремнефтористую кислоту, гексафторсиликат натрия.

Изобретение может быть использовано в процессах растворения, выщелачивания, выделения металлов и их соединений из водных растворов. Для осуществления способа проводят извлечение металлов из полиметаллического сырья выщелачиванием солянокислым раствором, осаждение металлов из солянокислых растворов осуществляют аммиаком и из раствора кристаллизуют соль NH4Clтв.

Изобретение относится к способам обработки материалов промышленных отходов, а именно к способам обработки летучей золы. Способ включает выщелачивание летучей золы с использованием HCl с получением продукта выщелачивания, содержащего ионы алюминия, ионы железа и твердое вещество, и отделение указанного твердого вещества от продукта выщелачивания.
Способ получения кристаллического йода может быть использован для производства йода реактивных квалификаций. Способ позволяет использовать в качестве сырья йодосодержащие растворы природного и техногенного происхождения с большим содержанием органических примесей.

Изобретение может быть использовано при утилизации перфторуглеродных текучих сред и холодильных агентов. Способ обработки и/или разложения текучих сред органических галоидов включает осуществление в первом реакторе реакции одного или нескольких органических галоидов, безводного водорода и безводного диоксида углерода для получения моноксида углерода и одного или нескольких безводных галоидов водорода.
Изобретение относится к обратимому удалению кислоты или кислот, выбранных из группы, состоящей из НСl, HF и НВr, из газовых смесей, которые содержат кислоты и одно или несколько других газообразных составляющих, представляющих собой РF 5, С(O)F2 или фторангидрид карбоновой кислоты.

Изобретение относится к области химической технологии неорганических веществ и касается получения бромидов металлов, в частности лития, натрия, калия и кальция. .

Изобретение относится к химической технологии. .
Изобретение относится к технологии йода, в частности к технологии концентрирования радиоактивного йода, используемого для синтеза радиофармпрепаратов. .
Изобретение относится к цветной металлургии, в частности к получению хлорида водорода из отходящих хлорсодержащих газов титаномагниевого производства. .

Изобретение относится к технологии неорганических веществ и может быть использовано при проведении синтеза фторсодержащих хладагентов, в производстве гексафторида урана.
Изобретение относится к области химической технологии и предназначено для утилизации отходов производства, содержащих фторсиликаты: тетрафторид кремния, кремнефтористую кислоту, гексафторсиликат натрия.
Изобретение относится к области химической технологии и предназначено для утилизации отходов производства, содержащих фторсиликаты: тетрафторид кремния, кремнефтористую кислоту, гексафторсиликат натрия.

Изобретение относится к технологии переработки обедненного гексафторида урана и может быть использовано для получения закиси-окиси урана и безводного фтористого водорода.
Изобретение относится к неорганической химии. Способ переработки отработанного бифторида калия включает его измельчение, обработку серной кислотой концентрации 95-100% в мольном соотношении серная кислота: бифторид калия 1:1,02.

Изобретение может быть использовано в химической промышленности. Способ извлечения фторида водорода из его водных растворов включает восстановление воды углеродом при повышенной температуре.
Изобретение может быть использовано в неорганической химии. Для получения чистого фторида водорода и/или фтороводородной кислоты из неочищенного фторида водорода используют полигидрофториды калия.

Изобретение относится к способам производства фтороводорода взаимодействием фторида кальция с серной кислотой. В соответствии с первым способом производства фтороводорода осуществляют следующие стадии: (a) стадию смешивания частиц источника фторида кальция со средним диаметром 1-40 мкм с серной кислотой, в молярном отношении серная кислота/фторид кальция 0,9-1,1 при температуре 0-40°С и затем нагревания полученной смеси до более высокой температуры, чем при смешивании исходных материалов, но не выше 70°С, с целью осуществления реакции и получения реакционной смеси в твердом состоянии; и (b) стадию нагревания реакционной смеси в твердом состоянии до температуры 100-200°С с целью получения фтороводорода в газовой фазе.

Изобретение может быть использовано в неорганической химии. Для получения фторида водорода проводят взаимодействие газообразных и летучих фторидов с кислородсодержащими и водородсодержащими веществами в режиме горения при температуре 1000-4000°C.
Изобретение может быть использовано в химической промышленности. Способ получения фторида водорода из отходов алюминиевого производства включает сернокислотное разложение криолитсодержащих отходов.

Группа изобретений относится к неорганической химии. Для получения армированной композиции аэрогеля: а) готовят раствор предшественника, содержащего материалы предшественника силикагеля и растворитель; b) объединяют раствор предшественника с армирующим материалом; с) переход предшественника силикагеля в растворе в композицию геля с образованием армированной композиции геля на основе диоксида кремния; d) извлекают часть растворителя из армированной композиции геля с получением первой армированной композиции аэрогеля; е) экспонируют первую армированную композицию аэрогеля для термической обработки в атмосфере с пониженным содержанием кислорода при температуре выше 300°C с получением второй армированной композиции аэрогеля.
Наверх