Способ разработки низкопроницаемых нефтяных залежей

Изобретение относится к области разработки нефтяных месторождений, в частности к добыче нефти из низкопроницаемых коллекторов. Технический результат - повышение нефтеотдачи пласта за счет снижения фильтрационного сопротивления движению флюидов. По способу осуществляют бурение системы наклонно направленных и/или горизонтальных скважин. Перфорируют боковые стволы. Проводят многократный гидравлический разрыв пласта с образованием системы трещин. Закачивают в образованную систему трещин через нагнетательные и добывающие скважины проппант. Затем закачивают через нагнетательные скважины кислородсодержащий агент с созданием зоны окисления с повышенной температурой. При этом перед закачкой кислородсодержащего агента через нагнетательные скважины закачивают оторочку в виде сжиженной широкой фракции легких углеводородов, содержащей не менее 80% легких углеводородов от С3 до С6 включительно. После закачки указанной оторочки нагнетательные скважины промывают азотом в объеме не менее 2,5 объемов ствола скважины для удаления легких углеводородов. В качестве кислородсодержащего агента используют смесь кислорода и азота с концентрацией кислорода 10-40 мол.%. Объемы кислородсодержащего агента и оторочки в виде сжиженной широкой фракции легких углеводородов выбирают исходя из условия обеспечения максимальной смесимости системы, состоящей из пластовой нефти, легких углеводородов и инертного газа - продукта внутрипластовой трансформации кислородсодержащего агента. 2 ил., 4 ил.

 

Изобретение относится к области разработки нефтяных месторождений, в частности, к способам добычи нефти из низкопроницаемых коллекторов.

Известен способ термогазовой обработки пласта, включающий закачку в пласт окислителя и охладителя (RU 2433258).

Недостатком указанного способа является невозможность его использования для добычи нефти из низкопроницаемых глинистых коллекторов, т.к. в результате последовательного воздействия высокой температуры и охладителя (вода или водные растворы) будут происходить процессы набухания и диспергирования глинистых компонентов породы, что приведет к затуханию фильтрации через пласт.

Известен способ разработки газовых месторождений в низкопроницаемых коллекторах, включающий бурение на месторождении вертикальных и горизонтальных скважин с многоствольным окончанием, проведении многостадийного гидроразрыва пласта и стимулирования работы скважин нагнетанием воды и воздуха (RU 2515776).

Недостатком известного способа является высокая сложность создания в пласте гидравлически связанной системы, что будет усиливать неоднородность пласта и ухудшать охват пласта воздействием, а также из-за неэффективности закачки воды в низкопроницаемые глинистые коллектора для вытеснения нефти.

Также известен способ разработки нефтяной залежи, заключающийся в закачке в нагнетательные скважины воздуха, водовоздушной смеси, горячей воды и растворителя для нефти (RU 2403383).

Данный способ не позволяет добывать легкую нефть из низкопроницаемого пласта т.к. отсутствует возможность закачки в пласт водовоздушной смеси и горячей воды, обладающими заметными фильтрационными сопротивлениями.

Кроме того, горячая вода и воздухо-воздушная смесь вызывают набухание и диспергирование глинистых компонентов породы и затухание фильтрации в пласте.

Из известных способов наиболее близким к предлагаемому способу по технической сущности и достигаемому результату является способ разработки многопластового неоднородного нефтяного месторождения, включающий бурение на месторождении системы вертикальных и горизонтальных скважин, а также боковых стволов, проведение перфорации боковых стволов нагнетательных и добывающих скважин, гидравлический разрыв пласта, закачку в образовавшиеся трещины пропанта, закачку через нагнетательные скважины кислородсодержащей смеси с созданием зоны окисления и последующую добычу нефти с помощью скважинной добывающей системы (RU 2567918).

Однако известный способ не обеспечивает высокой степени вытеснения нефти, что обусловлено низким уровнем смесимости нефти и инертного газового агента, образованного в ходе окислительной реакции в пласте.

Технической проблемой, на решение которой направлено предлагаемое изобретение, является снижение фильтрационного сопротивления движению флюидов и, соответственно, повышение нефтеотдачи пласта.

Указанная проблема решается тем, в способе разработки низкопроницаемых нефтяных залежей, включающем вскрытие вертикальной скважиной нефтяной залежи, бурение системы наклонно направленных и/или горизонтальных скважин, перфорацию боковых стволов и последующее проведение многократного гидравлического разрыва пласта с образованием системы трещин, закачку в образованную систему трещин через нагнетательные и добывающие скважины пропанта, последующую закачку через нагнетательные скважины кислородсодержащего агента с созданием зоны окисления с повышенной температурой и отбор продукции из добывающих скважин, согласно изобретению, перед закачкой кислородсодержащего агента через нагнетательные скважины закачивают оторочку в виде сжиженной широкой фракции легких углеводородов, причем объемы кислородсодержащего агента и оторочки в виде сжиженной широкой фракции легких углеводородов выбирают исходя из условия обеспечения максимальной смесимости системы, состоящей из пластовой нефти, легких углеводородов и инертного газа -продукта внутрипластовой трансформации кислородсодержащего агента.

Достигаемый технический результат заключается в обеспечении подавления капиллярных сил и снижения межфазного натяжения на границе фаз.

Сущность способа поясняется чертежами, иллюстрирующими примеры реализации способа, где на фиг. 1 приведена схема расположения нагнетательных (1-3) и добывающих (4-9) скважин; (где: а и b - расстояния между скважинами) и фиг. 2 - схема расположения добывающих (1-4) и нагнетательной (5) скважин, (где: r - расстояние между нагнетательной и добывающими скважинами).

Способ осуществляют следующим образом.

Производят вскрытие вертикальной скважиной нефтяной залежи и бурение системы наклонно направленных и/или горизонтальных скважин. Осуществляют перфорацию боковых стволов нагнетательных и добывающих скважин и последующий многократный гидравлический разрыв пласта с образованием системы трещин. После чего в образованную систему трещин через нагнетательные и добывающие скважины осуществляют закачку пропанта. Сетку размещения скважин и режим осуществления гидравлического разрыва пласта проводят с учетом направления природных трещин и напряжений в низкопроницаемых пластах для обеспечения максимального охвата пласта воздействием и позднего прорыва вытесняющего флюида к добывающим скважинам.

Затем через нагнетательные скважины производят закачку оторочки в виде сжиженной широкой фракции легких углеводородов (ШФЛУ) с содержанием не менее 80% легких углеводородов с C3 до C6 включительно.

После чего нагнетательные скважины промывают азотом для удаления паров легких углеводородов, закачку азота производят в объеме не менее 2,5 объемов ствола скважины.

Затем приступают к закачиванию кислородсодержащего агента с созданием зоны окисления с повышенной температурой и с генерацией в пласте инертного газового агента.

В качестве кислородсодержащего агента используют смесь кислорода и азота с концентрацией кислорода 10-40 мольн. %.

В случае прорыва кислородсодержащего агента в добывающие скважины и при содержании кислорода в составе попутных газов 2 мольн. % и выше добывающие скважины останавливают и продувают азотом в объеме не менее 2,5 объемов ствола скважины.

Традиционно трансформация в пласте закачиваемого воздуха в инертный газовый агент позволяет получить непосредственно в пласте легко подвижный газовый агент, вытесняющий нефть и способный реализовать в пластовых условиях несмешивающийся режим вытеснения нефти, близкий, но не совпадающий, со смешивающимся режимом вытеснения нефти, но не обеспечивает полное подавление капиллярных сил, препятствующих вытеснению нефти.

Создание предварительных условий путем закачки перед кислородсодержащим агентом оторочки из ШФЛУ позволяет достичь высокую смесимость системы, состоящей из пластовой нефти, смеси легких углеводородов (закаченная ШФЛУ и испарившиеся из нефти легкие углеводороды) и инертного газового агента (продукт пластовой трансформации воздуха), что обеспечит полное подавление капиллярных сил, снизит межфазное натяжение и вязкость пластовой нефти, а также уменьшит сопротивление фильтрации. Легкие углеводороды и инертный продукт внутрипластовой трансформации воздуха обладают меньшей вязкостью, чем вода и нефть, что значительно уменьшает общее сопротивление фильтрации в низкопроницаемом пласте.

Таким образом, закачка оторочки в виде в виде сжиженной широкой фракции легких углеводородов создает оптимальные условия для осуществления тепло-газового воздействия в условиях глинистого низкопроницаемого коллектора.

Объемы оторочки ШФЛУ и кислородсодержащего агента оптимизируют с помощью математического моделирования пласта, исходя из условия обеспечения максимально возможного уровня смесимости системы, состоящей из пластовой нефти, смеси легких углеводородов и образовавшегося инертного газа внутрипластовой трансформации кислородсодержащего агента.

Как известно низкая проницаемость коллекторов (например, тюменской свиты) в значительной степени связана с большим содержанием глинистого цемента. Глинистые минералы способны менять смачиваемость с гидрофобной на гидрофильную и увеличивать объем (набухание) при контакте с водой, что приводит к увеличению граничных слоев на поверхности породы и отрицательно влияет на проницаемость. В случае глинистых коллекторов проницаемость может значительно уменьшаться по мере роста насыщенности пористой среды водой.

При использовании предлагаемого способа при закачке ШФЛУ и кислородсодержащего агента (который трансформируется в пласте в инертный газовый агент) насыщенность гидрофобной фазой не уменьшается, что повысит проницаемость пласта для гидрофобных флюидов.

При этом уменьшается степень набухания глин за счет стабилизации и повышения насыщенности горных пород инертными продуктами и продуктами окисления нефти.

Ниже приведены примеры реализации предлагаемого способа, иллюстрирующие, но не ограничивающие его применение.

Пример 1.

Осуществляют способ разработки низкопроницаемой нефтяной скважины. Проницаемость пласта составляет 0,002-0,003 мкм. Бурение системы нагнетательных и добывающих скважин осуществляют в соответствии со схемой, изображенной на фигуре 1. После проведения гидравлического разрыва пласта с образованием системы трещин и закачки в образованную систему трещин пропанта закачивают в пласт через добывающую скважину определенный объем широкой фракции легких углеводородов (ШФЛУ). После этого через нагнетательную скважину нагнетают в пласт кислородсодержащий агент (воздух) при давлении 250 атм.

Необходимый для закачки в пласт объем ШФЛУ устанавливают в ходе лабораторных фильтрационных динамических испытаний образца пластовой породы и образца нефти разрабатываемого месторождения. При этом устанавливают допустимо минимальное значение объема ШФЛУ и допустимо минимальное значение объема газового агента, обеспечивающие при данных условиях (вязкость 0,41 мПа⋅с, пластовая температура 92°С) достижение максимально возможного уровня смесимости системы, состоящей из пластовой нефти, смеси легких углеводородов и газового агента - модельного продукта внутрипластовой трансформации воздуха. Условие достижения максимально возможного уровня смесимости системы соответствует достижению максимально возможного коэффициента вытеснения нефти для испытываемых образцов пластовой породы и нефти. Таким образом, осуществляют серию лабораторных испытаний с варьируемыми значениями закачиваемых объемов ШФЛУ и газового агента - продукта внутрипластовой трансформации воздуха.

Результаты эксперимента приведены в табл. 1, табл. 2.

Таким образом, объем ШФЛУ, равный 10% от объема пор пластовой породы, и объем газового агента, равный 120% от объема пор пластовой породы, соответствуют достижению максимально возможного уровня смесимости системы при данных условиях и, соответственно, максимально возможному коэффициенту вытеснения нефти. При этом объем газового агента должен быть не менее 120% от объема пор пластовой породы.

Поровый объем участка пласта, ограниченного скважинами №1 - №9 (см. фигура 1), определяется по формуле:

Vп=4*a*b*L*k, где:

а и b - расстояния между скважинами (составляет 100 м),

L - толщина пласта (составляет 10 м),

k - коэффициент пористости пласта (устанавливается в результате исследований кернового материала и составляет 0,17).

Vп=4*100*100*10*0,17=68000 м3.

Объем нефти в пласте на участке, ограниченном скважинами №1 - №9 (см. фигура 1), определяется по формуле:

Vн=Vп*S, где

S - коэффициент нефтенасыщенности пласта (устанаваливается в результате геофизических исследований и составляет 0,5).

Vн=68000*0,5=34000 м3.

Согласно результатам проведенных лабораторных испытаний (табл. 1, 2) в нагнетательные скважины №1 - №3 в равных долях закачано:

Vп*10%/100=68000*0,1=6800 м3 оторочки ШФЛУ и

Vп*120%/100=68000*120/100=81600 м3 газового агента при давлении 250 атм или 81600*250=20400000 м3 газового агента при нормальных условиях. Перед закачкой воздуха скважину продули азотом объемом, равным пяти объемам ствола скважины.

Общее количество добытой нефти составило 19720 м3, что соответствовало коэффициенту извлечения нефти 58%. Реальный коэффициент извлечения нефти ниже коэффициента вытеснения нефти в лабораторных испытаниях ввиду неоднородности пласта.

Пример 2

Осуществляют способ разработки низкопроницаемой нефтяной скважины. Проницаемость пласта составляет 0,001-0,002 мкм2. Бурение системы нагнетательных и добывающих скважин осуществляют в соответствии со схемой, изображенной на фигуре 2. После проведения гидравлического разрыва пласта с образованием системы трещин и закачки в образованную систему трещин пропанта закачивают в пласт через добывающую скважину определенный объем широкой фракции углеводородов (ШФЛУ). После этого через нагнетательную скважину нагнетают в пласт кислородсодержащий агент (воздух) при давлении 230 атм.

Необходимый для закачки в пласт объем ШФЛУ устанавливают в ходе лабораторных фильтрационных динамических испытаний образца пластовой породы и образца нефти разрабатываемого месторождения. При этом устанавливают допустимо минимальное значение объема ШФЛУ и допустимо минимальное значение объема газового агента, обеспечивающие при данных условиях (вязкость 0,22 мПа⋅с, пластовая температура 112°С) достижение максимально возможного уровня смесимости системы, состоящей из пластовой нефти, смеси легких углеводородов и воздуха в качестве кислородсодержащего агента. Условие достижения максимально возможного уровня смесимости системы соответствует достижению максимально возможного коэффициента вытеснения нефти для испытываемых образцов пластовой породы и нефти. Таким образом, осуществляют серию лабораторных испытаний с варьируемыми значениями закачиваемых объемов ШФЛУ и газового агента - продукта внутрипластовой трансформации воздуха.

Результаты эксперимента приведены в табл. 3, табл. 4.

Таким образом, объем ШФЛУ, равный 5% от объема пор пластовой породы, и объем газового агента, равный 120% от объема пор пластовой породы, соответствуют достижению максимально возможного уровня смесимости системы при данных условиях и, соответственно, максимально возможному коэффициенту вытеснения нефти. При этом объем газового агента должен быть не менее 120% от объема пор пластовой породы.

Поровый объем участка пласта, ограниченного скважинами №1 - №4 (см. фигура 2), определяется по формуле:

Vп=π*r2*L*k, где:

r - расстояние между нагнетательной и добывающими скважинами (составляет 100 м),

L - толщина пласта (составляет 10 м),

k - коэффициент пористости пласта (устанавливается в результате исследований скважин и кернового материала и составляет 0,19).

Vп=3,14*1002*10*0,19=59660 м3.

Объем нефти в пласте на участке, ограниченном скважинами №1 - №4, определяется по формуле:

Vн=Vп*8, где:

S - коэффициент нефтенасыщенности пласта (устанавалтвается в результате геофизических исследований и составляет 0,6).

Vн=59660*0,6=35796 м3.

Согласно результатам проведенных лабораторных испытаний (табл. 3, 4) в нагнетательную скважину №5 закачивают:

Vп*5%/100=59660*0,05=2983 м3 оторочки ШФЛУ и

Vп*120%/100=59660*120/100=71592 м3 газового агента при давлении 230 атм или 71592*230=16466160 м3 газового агента при нормальных условиях. Перед закачкой воздуха скважину продули азотом объемом, равным пяти объемам ствола скважины.

Общее количество добытой нефти составило 22194 м3, что соответствовало коэффициенту извлечения нефти 62%. Реальный коэффициент извлечения нефти ниже коэффициента вытеснения нефти в лабораторных испытаниях ввиду неоднородности пласта.

Таким образом, создание предварительных условий для образования продукта внутрипластовой трансформации воздуха - инертного газового агента - обеспечивает вытеснение нефти из низкопроницаемых коллекторов и снижение фильтрационного сопротивления движению флюидов в пласте за счет достижения максимально полной смесимости между нефтью и газом.

Применение предлагаемого способа позволит повысить степень извлечения нефти из низкопроницаемых пластов на 20-40%, т.е. в тех случаях, когда традиционный метод заводнения неэффективен.

Реализация предлагаемого способа обеспечит решение проблемы эффективной добычи нефти из низкопроницаемых (менее 0,02-0,010 мкм) коллекторов.

Способ разработки низкопроницаемых нефтяных залежей, включающий вскрытие вертикальной скважиной нефтяной залежи, бурение системы наклонно направленных и/или горизонтальных скважин, перфорацию боковых стволов, последующее проведение многократного гидравлического разрыва пласта с образованием системы трещин, закачку в образованную систему трещин через нагнетательные и добывающие скважины проппанта, последующую закачку через нагнетательные скважины кислородсодержащего агента с созданием зоны окисления с повышенной температурой и отбор продукции из добывающих скважин, отличающийся тем, что перед закачкой кислородсодержащего агента через нагнетательные скважины закачивают оторочку в виде сжиженной широкой фракции легких углеводородов, содержащей не менее 80% легких углеводородов от С3 до С6 включительно, после закачки указанной оторочки нагнетательные скважины промывают азотом в объеме не менее 2,5 объемов ствола скважины для удаления легких углеводородов, а в качестве кислородсодержащего агента используют смесь кислорода и азота с концентрацией кислорода 10-40 мол.%, причем объемы кислородсодержащего агента и оторочки в виде сжиженной широкой фракции легких углеводородов выбирают исходя из условия обеспечения максимальной смесимости системы, состоящей из пластовой нефти, легких углеводородов и инертного газа - продукта внутрипластовой трансформации кислородсодержащего агента.



 

Похожие патенты:

Группа изобретений относится к операциям заканчивания в стволе скважины с использованием многотрубных систем. Технический результат – повышение эффективности заканчивания скважины.

Описаны система и способ приготовления флюида для обработки приствольной зоны, включающий загрузку пакетов, содержащих покрытую оболочкой добавку, в зону хранения пакетов первого контейнера; пропускание пакетов в измельчитель пакетов; разрушение оболочек пакетов для вскрытия добавки; пропускание незащищенной оболочкой добавки в смеситель; пропускание водного раствора из второго контейнера в смеситель и смешивание незащищенной оболочкой добавки с водным раствором для получения флюида для обработки приствольной зоны.

Изобретение относится к применению отслаивающего материала для повышения вязкости неводной жидкой основы, содержащей органофильную глину. Отслаивающий материал содержит глицеринкарбонат и алкоксилированный спирт, имеющий формулу: ,в которой R представляет собой неразветвленный или разветвленный алкил, содержащий от 2 до 18 атомов углерода, или ароматический радикал, имеющий структуру: ,в которой R1 представляет собой разветвленный или неразветвленный алкил, содержащий от 2 до 18 атомов углерода, R2 представляет собой H или CH3, R3 представляет собой H или CH3, a составляет от 0 до 12 и b составляет от 1 до 12.

Настоящее изобретение относится к композициям и способам для сохранения контроля над скважиной в течение капитального ремонта. Способ обработки подземной скважины в процессе ремонта скважины, содержащий этапы: приготовление композиции, содержащей воду, по меньшей мере, один водорастворимый полимер, частицы и способные разрушаться волокна, помещение композиции в ствол скважины таким образом, чтобы она вступала в контакт с хвостовиком со щелевыми прорезями, скважинным фильтром, перфорациями, либо их комбинациями, обеспечение возможности прохождения композиции в хвостовик, фильтр или перфорации так, чтобы частицы и волокна формировали, по меньшей мере, одну пробку или осадок на фильтре, или то и другое, которые выдерживают перепад давления выше 3,5 МПа, предотвращая дальнейшее движение флюида через хвостовик, фильтр или перфорации, создание возможности волокнам разрушаться, что приводит к ослаблению пробки или осадка на фильтре или того и другого, и удаление пробки или осадка на фильтре, или того и другого, для возобновления движения флюида через хвостовик, фильтр или перфорации.

Группа изобретений относится к горному делу, в частности к вариантам системы гидравлического разрыва пласта. Система включает гидравлическую систему передачи энергии, выполненную с возможностью обмена давлением между первой жидкостью и второй жидкостью.

Изобретение относится к скважинным системам для добычи различных текучих сред, в частности для добычи текучей среды из углеводородосодержащего пласта с использованием гидроразрыва.

Варианты реализации изобретения относятся к композициям, содержащим отверждаемую смолу и органофильно модифицированную глину, для применения в подземных нефтяных скважинах, а также способы их применения.

Изобретение относится к нефтедобывающей промышленности и может быть применено для разработки коллекторов нефти и\или газа горизонтальными скважинами с проведением многостадийного гидравлического разрыва пласта как в карбонатных, так и в терригенных коллекторах.

Группа изобретений относится к способам скважинных работ, скважинного цементирования, скважинной системе. Техническим результатом является улучшение эффективности и надежности инструментов.

Изобретение относится к способам гидравлического разрыва в открытых стволах горизонтальных скважин, вскрывших многопластовую продуктивную залежь нефти с низкими фильтрационно-емкостными свойствами с подошвенной водой в карбонатных породах.

Изобретение относится к применению отслаивающего материала для повышения вязкости неводной жидкой основы, содержащей органофильную глину. Отслаивающий материал содержит глицеринкарбонат и алкоксилированный спирт, имеющий формулу: ,в которой R представляет собой неразветвленный или разветвленный алкил, содержащий от 2 до 18 атомов углерода, или ароматический радикал, имеющий структуру: ,в которой R1 представляет собой разветвленный или неразветвленный алкил, содержащий от 2 до 18 атомов углерода, R2 представляет собой H или CH3, R3 представляет собой H или CH3, a составляет от 0 до 12 и b составляет от 1 до 12.

Настоящее изобретение относится к композициям и способам для сохранения контроля над скважиной в течение капитального ремонта. Способ обработки подземной скважины в процессе ремонта скважины, содержащий этапы: приготовление композиции, содержащей воду, по меньшей мере, один водорастворимый полимер, частицы и способные разрушаться волокна, помещение композиции в ствол скважины таким образом, чтобы она вступала в контакт с хвостовиком со щелевыми прорезями, скважинным фильтром, перфорациями, либо их комбинациями, обеспечение возможности прохождения композиции в хвостовик, фильтр или перфорации так, чтобы частицы и волокна формировали, по меньшей мере, одну пробку или осадок на фильтре, или то и другое, которые выдерживают перепад давления выше 3,5 МПа, предотвращая дальнейшее движение флюида через хвостовик, фильтр или перфорации, создание возможности волокнам разрушаться, что приводит к ослаблению пробки или осадка на фильтре или того и другого, и удаление пробки или осадка на фильтре, или того и другого, для возобновления движения флюида через хвостовик, фильтр или перфорации.

Изобретение относится к пенообразующему составу, имеющему хорошую устойчивость при низких температурах, и способу его применения для повышения нефтеотдачи. Водный пенообразующий раствор анионного поверхностно-активного вещества для применения в способе повышения нефтеотдачи, содержащий один или более альфа-олефинсульфонатов - AOS, растворитель, имеющий химическую формулу C8Н18O3, C8H16O3 или их смесь, и воду.

Изобретение относится к нефтедобывающей промышленности и может найти применение при разработке неоднородных терригенных или карбонатных продуктивных пластов скважинами с горизонтальным окончанием.
Изобретение относится к области нефтегазовой промышленности и может быть использовано при разработке месторождений углеводородов с наличием в разрезе пласта подстилающих подошвенных вод.
Изобретение относится к материалам, используемым при обработке скважин гидроразрывом. Композиционный материал для ввода реагента и/или индикатора для обработки скважины в пробуренный пласт подземной формации, характеризуется тем, что содержит термообработанную подложку, содержащую достаточно мощное ядро, предотвращающее закрытие трещиноватости на месте залегания в условиях продуктивного пласта, и оксид металла по меньшей мере частично нанесенный на ядро, причем площадь поверхности оксида металла термообработанной подложки составляет от 1 до 10 м2/г, диаметр термообработанной подложки составляет от 0,1 до 3 мм, и реагент и/или индикатор для обработки скважины, нанесенный на покрытие из оксида металла на термообработанной подложке.

Группа изобретений относится к области нефтегазодобывающей промышленности, преимущественно к добыче вязкой и сверхвязкой нефти, а также может быть использовано для интенсификации добычи нефти, осложненной вязкими составляющими и отложениями.
Настоящее изобретение относится к применению сверхвпитывающих полимеров для регулирования давления и отклоняющих применений при обработке подземного пласта, в том числе гидравлическим разрывом.

Изобретение относится к производству и использованию композиции поверхностно-активного вещества в способе третичной добычи нефти. Композиция поверхностно-активных веществ для повышения добычи нефти содержит катионно-неионное поверхностно-активное вещество - КПАВ и анионное поверхностно-активное вещество – АПАВ приведенных формул.

Изобретение относится к способу добычи нефти, включающему в себя отделение метана и отделение сероводорода из кислого газа, содержащего метан и сероводород; получение монооксида углерода и водорода из по меньшей мере части отделенного метана; получение метанола из по меньшей мере части полученного монооксида углерода и по меньшей мере части полученного водорода; получение диметилсульфида из по меньшей мере части полученного метанола и по меньшей мере части отделенного сероводорода; получение композиции для извлечения нефти, которая содержит по меньшей мере 75 мол.% диметилсульфида, из по меньшей мере части полученного диметилсульфида; введение указанной композиции для извлечения нефти в нефтеносный пласт, содержащий нефть; контактирование указанной композиции для извлечения нефти с нефтью в нефтеносном пласте и после контактирования указанной композиции для извлечения нефти с нефтью в нефтеносном пласте добычу текучей среды из указанного нефтеносного пласта, при этом добываемая текучая среда содержит по меньшей мере часть нефти из нефтеносного пласта.

Изобретение относится к композиции, включающей сшитые набухающие полимерные микрочастицы, и способу изменения водопроницаемости подземной формации. Композиция закачиваемого флюида для извлечения углеводородного флюида из подземной формации, содержащая водную среду и от примерно 100 ч./млн до примерно 50000 ч./млн сшитых полимерных микрочастиц в пересчете на активное вещество полимера в указанной композиции, где указанные сшитые микрочастицы содержат от примерно 0,9 до примерно 20 мол.% одного или более лабильных сшивающих агентов, характеризуются такими распределением набухших частиц по размерам и реологическими свойствами, которые подходят для того, чтобы замедлять подземный поток воды, и указанные подвижные сшивающие агенты способны расщепляться при нейтральном или более низком значении pH. Способ повышения темпа добычи углеводородных флюидов в подземной формации, включающий: введение в подземную формацию указанной выше композиции закачиваемого флюида и извлечение углеводородного флюида. Изобретение развито в зависимых пунктах формулы. Технический результат – повышение эффективности обработки. 2 н. и 6 з.п. ф-лы, 1 ил., 6 табл., 2 пр.
Наверх