Способ сепарации алмазов и устройство для его осуществления

Способ сепарации алмазов включает транспортировку породы в виде потока отдельных частиц, облучение породы рентгеновским излучением с широким энергетическим спектром, регистрацию распределения интенсивности излучения, прошедшего через участок потока породы, на разных энергиях, определение наличия в отдельных частицах породы алмаза по характерным отклонениям двумерного распределения оптической плотности частицы породы от индивидуальной модели оптической плотности однокомпонентного вещества и отделение таких частиц. Индивидуальную модель оптической плотности строят для главного вещества методом робастной регрессии как полиноминальную модель двухмерной плотности. Устройство, реализующее способ, состоит из транспортирующего механизма, источника рентгеновского излучения, детекторных средств на основе линейных рентгеночувствительных детекторов (один с возможностью регистрации высокой энергии, другой с возможностью регистрации низкой энергии), расположенного между ними фильтрующего средства, компьютерных средств оценки и исполнительного механизма сброса. Вертикальные оси источника рентгеновского излучения, фильтра и детекторных средств совмещены. Повышена точность определения алмаза, скрытого внутри породы, что увеличивает эффективность процесса сепарации. 1 з.п. ф-лы, 2 ил.

 

Изобретение относится к области добычи полезных ископаемых, а именно к рентгеновским способам обогащения различных пород полезных ископаемых, и может быть использовано при сепарации алмазосодержащей породы.

Известны способ сепарации частиц полезного материала и устройство для его осуществления [патент RU на изобретение №2517148, МПК В03В 13/00 (2006.01), приоритет 28.12.2012 г., опубл. 27.05.2014 г., патентообладатели Лукьянченко Евгений Матвеевич, Захаров Владимир Гаврилович (оба - RU)]. Способ сепарации частиц полезного материала включает облучение анализируемого материала пучком первичного рентгеновского излучения, регистрирование проникающего рентгеновского излучения, сравнение сигнала с пороговым значением и выделение частицы полезного материала по результатам сравнения. Анализируемый материал облучают на ленте движущегося транспортера плоскопараллельным пучком первичного рентгеновского излучения с расходимостью не более 0,1°, поперечное сечение которого меньше размера частиц полезного материала. После чего регистрируют интенсивность проходящего проникающего рентгеновского излучения позиционно-чувствительным детектором. При этом координату X положения частицы на ленте транспортера определяют позиционно-чувствительным детектором, а координату Y определяют исходя из скорости ленты транспортера. Способ осуществляется с помощью устройства, содержащего рентгено-оптически связанные источник первичного излучения, коллиматор первичного излучения и детектор. Источником первичного излучения является источник нерасходящегося рентгеновского пучка с расходимостью не более 0,1°. Коллиматор первичного излучения выполнен в виде гребенки из материала, сильно поглощающего первичное рентгеновское излучение. Детектором является позиционно-чувствительный детектор. Устройство дополнительно содержит ленту транспортера со слоем анализируемого материала, движущуюся с постоянной скоростью, коллиматор прошедшего излучения и фильтр прошедшего излучения, установленный между коллиматором прошедшего излучения и позиционно-чувствительным детектором. Однако селективность и достоверность сепарации для алмазного сырья недостаточна, так как алмазы могут находиться в потоке материала, направляемого на сепарацию, в нераскрытом виде, при этом не существует надежного способа различить включенный алмаз от нароста или выемки на частице пустой породы, поскольку для любого спектра рентгеновского излучения найдется толщина пустой породы, такая, что коэффициент поглощения будет в точности соответствовать данному алмазу.

Известен способ сепарации алмазов [патент RU №2470714, МПК В03В 13/00 (2006.01), приоритет 21.07.2011 г., опубл. 27.12.2012 г., патентообладатель Общество с ограниченной ответственностью ''Лаборатория рентгенодиагностических систем'' (RU)], включающий транспортировку алмазосодержащей породы в виде монослойного потока отдельных частиц, облучение породы рентгеновским излучением, регистрацию распределения интенсивности излучения, прошедшего через участок потока породы, определение характеристики алмазов и отделение алмазов по величине характеристики. Облучение породы осуществляется двумя узкими последовательно расположенными моноэнергетичными пучками излучения, энергии которых не равны друг другу. Распределение интенсивности излучения каждого пучка, прошедшего через один и тот же участок потока породы, регистрируется с помощью двух последовательно расположенных линейных рентгеночувствительных детекторов. Каждый из детекторов регистрирует излучение только от соответствующего ему пучка излучения, а максимум спектральной чувствительности каждого их детекторов равен энергии соответствующего ему пучка излучения. В качестве характеристики алмаза используется частное от деления натурального логарифма отношения интенсивности излучения, прошедшего через алмаз, к интенсивности излучения, прошедшего мимо алмаза и любой другой частицы породы, одного пучка излучения, к натуральному логарифму отношения интенсивности излучения, прошедшего через этот же алмаз, к интенсивности излучения, прошедшего мимо алмаза и любой другой частицы породы, другого пучка излучения. Реализует этот способ устройство, Предлагаемый способ реализуется с помощью устройства, в состав которого входят: бункер для алмазосодержащей породы, транспортирующий механизм (транспортер), два источника рентгеновского излучения, два рентгеночувствительного детектора, блок обработки информации, механизм сброса и накопитель.

Данный способ обладает рядом недостатков, а именно:

1. Значительное количество алмазов скрыты внутри породы. В результате вычисления используемой в данном способе характеристики участок породы, по которому она была вычислена, относится к одному из двух классов: алмаз или пустая порода. Способ не предназначен для выявления алмаза, скрытого внутри породы.

2. Необходимая точность вычисления используемой в способе характеристики требует высокой точности сопоставления измерений двух последовательно расположенных линейных детекторов. Такое сопоставление существенно затруднено невозможностью точного контроля скорости транспортирующего механизма и возможными смещениями частиц породы в процессе транспортировки от одного детектора к другому.

3. Состав различных частиц пустой породы различается вследствие наличия в них различных примесей. Поэтому предложенная в данном способе характеристика имеет большую дисперсию на участках пустой породы из разных частиц, что не позволяет использовать ее для выявления алмазов, скрытых внутри породы.

Наиболее близкими к заявляемому техническому решению являются способ и устройство разделения навалочных материалов с помощью выдувающего устройства, снабженного выдувающими соплами, расположенными на участке падения, который находится после конвейерной ленты [патент RU №2344885, МПК В07С 5/34 (2006.01), приоритет 25.11.2004 г., опубл. 27.01.2009 г., патентообладатель КоммоДас ГмвХ (DE)]. Выдувающими соплами управляют компьютерные средства оценки в зависимости от сигналов детекторов излучения, проникающего через поток навалочного материала на конвейерной ленте, которое испускается источником рентгеновского излучения и обнаруживается детекторными средствами. Рентгеновское излучение, которое проходит через частицы навалочного материала, фильтруется для разделения по меньшей мере на два спектра с различными диапазонами энергии перед позиционно-чувствительным обнаружением этого излучения, которое интегрируется по диапазону энергий, с помощью по меньшей мере одного детекторного средства. Устройство содержит источник рентгеновского излучения, компьютерные средства оценки и детекторные средства, до по меньшей мере одного из детекторных средств установлены по меньшей мере два фильтрующих устройства, обеспечивающих прохождение рентгеновского излучения взаимно различных энергетических спектров, а в качестве детекторных средств использованы линейки детекторов, состоящие из множества отдельных элементов, расположенных поперек конвейерной ленты, при этом линейкой детекторов снабжен каждый фильтр. Линейка детекторов, соответствующая ширине конвейерной ленты, сформирована линейными фотодиодными матрицами, активная поверхность которых покрыта флуоресцентной бумагой. Фильтры представляют собой металлические фольги, через которые проходит рентгеновское излучение с взаимно различными уровнями энергии и расположены до детекторов под конвейерной лентой, а рентгеновская трубка, создающая тормозное излучение, расположена над конвейерной лентой. Устройство снабжено экранирующей коробкой, расположенной по существу над конвейерной лентой и окружающей последнюю и участок выдувания в качестве кожуха, покрывающего конвейерную ленту на участке до источника рентгеновского излучения, а в начале ленты наклонный лоток закрывает входной створ. Устройство включает более двух фильтров для использования более двух уровней энергии. Однако при наличии скрытых внутри куска породы алмазов не обеспечивается надежность выделения ценного компонента из потока сортируемого материала.

Техническим результатом заявляемого изобретения является повышение точности определения алмаза, скрытого внутри породы, что повышает эффективность процесса сепарации.

Указанный технический результат в отношении способа, включающего транспортировку породы в виде потока отдельных частиц, облучение породы рентгеновским излучением с широким энергетическим спектром, регистрацию распределения интенсивности излучения, прошедшего через участок потока породы, на разных энергиях, определение наличия в отдельных частицах породы алмаза и отделение таких частиц, достигается тем, что наличие алмаза определяют по характерным отклонениям двумерного распределения оптической плотности частицы породы от построенной индивидуальной модели плотности однокомпонентного вещества.

В отношении устройства достижение указанного технического результата обусловлено тем, что в устройстве, включающем транспортирующий механизм, источник рентгеновского излучения, детекторные средства на основе линейных рентгеночувствительных детекторов, фильтрующее средство, компьютерные средства оценки и исполнительный механизм сброса, фильтрующее средство расположено между детекторными средствами, при этом вертикальные оси источника рентгеновского излучения, фильтра и детекторных средств совмещены. Применяют один линейный рентгеночувствительный детектор с возможностью регистрации высокой энергии, другой - с возможностью регистрации низкой энергии.

Данная совокупность признаков как способа, так и устройства не выявлена из патентной документации и научно-технической информации, что позволяет сделать вывод о новизне данных технических решений.

Предполагаемое изобретение иллюстрируется графическими материалами. На фиг. 1 представлена последовательность операций, входящих в заявляемый способ. На фиг. 2 - схема устройства для реализации способа.

Способ с использованием указанного устройства реализуется следующим образом.

Из последовательно полученных в разные моменты времени одномерных кортежей измерений формируется двухканальное двумерное изображение, каналы которого соответствуют низкой и высокой энергии излучения. На изображении пороговой бинаризацией выделяются отдельные объекты, которые далее независимо анализируются. В предположении, что объект состоит из однокомпонентного вещества с включениями другого вещества, для главного вещества объекта методом робастной регрессии строится полиномиальная модель двумерной оптической плотности. Построенная модель сравнивается с исходным двумерным распределением оптической плотности, и если отклонения от модели характерны для наличия в исходном веществе включений алмазов, данный объект помечается как извлекаемый.

Предлагаемый способ реализуется с помощью устройства, в состав которого входят: бункер 1 для алмазосодержащей породы, транспортирующий механизм 2, расположенный над транспортирующим механизмом источник рентгеновского излучения 3, два линейных рентгеночувствительных детектора 4, 6, разделенных фильтром 5 и соединенных с блоком обработки информации 7, выход которого соединен с механизмом сброса 8, а также накопитель 9. Позиционным номером 10 обозначен отделяемый объект (частица породы с находящимся внутри нее алмазом).

Устройство работает следующим образом. Из бункера 1 транспортирующим механизмом 2 алмазосодержащая порода последовательно подается в зону облучения. Участок породы на всю ширину ленты облучается источником рентгеновского излучения 3 с широким энергетическим спектром. Распределение интенсивности прошедшего через частицы излучения регистрируется на разных энергиях с помощью двух линейных рентгеночувствительных детекторов 4 и 6, разделенных фильтром 5 и расположенных в одной плоскости с источником. Вертикальные оси источника рентгеновского излучения, фильтра и детекторных средств совмещены. Измерения с детекторов поступают в блок обработки информации 7, который определяет наличие в частицах породы включений алмазов и передает управляющий сигнал механизму сброса 8. Таким образом, объекты 10 с включениями алмазов направляются механизмом сброса в накопитель 9.

Реализация изобретения позволит увеличить эффективность сепарации, повышая извлечение алмазов за счет достоверного определения наличия в частицах породы нераскрытых алмазов.

1. Устройство для сепарации алмазов, включающее транспортирующий механизм, источник рентгеновского излучения, детекторные средства на основе линейных рентгеночувствительных детекторов, фильтрующее средство, компьютерные средства оценки и исполнительный механизм сброса, отличающееся тем, что фильтрующее средство расположено между детекторными средствами, при этом вертикальные оси источника рентгеновского излучения, фильтра и детекторных средств совмещены.

2. Устройство по п. 1, отличающееся тем, что в качестве линейных рентгеночувствительных детекторов применяют один с возможностью регистрации высокой энергии, другой с возможностью регистрации низкой энергии.



 

Похожие патенты:

Изобретение относится к способам и устройствам для измерения параметров ограненного драгоценного камня. Устройство состоит из комплекта источников излучения, каждый из которых сконфигурирован для испускания оптического излучения на отдельных длинах или в интервалах длин волн таким образом, чтобы испускаемое излучение облучало, по меньшей мере, часть измерительной позиции.

Изобретение относится к технологии обогащения полезных ископаемых и может быть использовано для предварительного обогащения минерального сырья после крупного или среднего дробления, а также для порционной сортировки материала после мелкого дробления.

Изобретение относится к разделению или сортировке рудных материалов сухим способом, в частности к сухому обогащению алмазосодержащей руды с применением радиационных методов, а именно с измерением вторичной эмиссии характерного ядерного гамма-излучения, возникающего под действием быстрых меченых нейтронов.

Изобретение относится к средствам для исследования драгоценных камней. Описаны аппарат и способ исследования и, в качестве опции, сортировки драгоценных камней.

Изобретение относится к области жидкокристаллических дисплеев, а именно к способам скрининга оптической пленки на основе фосфора, используемой в модуле фоновой подсветки.

Изобретение относится к способу анализа объектов (3) в зависимости от их электромагнитных свойств, а именно для анализа и сортировки их на неметаллические и металлические объекты.

Сортировальный аппарат (100) для классифицирования необработанных потенциально драгоценных камней в составе агрегатного материала. Аппарат содержит транспортирующую систему (102) для индивидуального транспортирования камня, извлеченного из агрегатного материала, по меньшей мере к одному месту измерения и измерительную систему (104), сконфигурированную с возможностью проводить, по меньшей мере в одном месте измерения, одно или более из следующих определений: содержит ли камень алмазный материал, содержит ли алмазный материал борт и какова форма камня.

Изобретение относится к способу обработки собранных корнеплодных культур. Способ включает в себя этапы, на которых оптически формируют гиперспектральные или многоспектральные изображения объемного потока собранной корнеплодной культуры для получения множества пикселей изображений, каждый из которых имеет спектральный профиль.

Изобретение предназначено для визиометрического анализа качества руды в процессах обогащения полезных ископаемых и может быть использовано для контроля состава продуктов в металлургии и химии.

Изобретение относится к области обогащения полезных ископаемых, а именно к способам обогащения различных пород полезных ископаемых по их теплофизическим свойствам, и может быть использовано при сепарации минеральных частиц, в том числе алмазосодержащей породы, на различных этапах.
Наверх