Способ теплового нагружения обтекателей летательных аппаратов из неметаллических материалов

Изобретение относится к способам воспроизведения аэродинамического теплового воздействия на обтекатель летательного аппарата в наземных условиях. Заявленный способ теплового нагружения обтекателей летательных аппаратов из неметаллических материалов включает нагрев наружной поверхности обтекателя и измерение температуры. Температурный режим воспроизводится в печи, которая предварительно разогревается без обтекателя до температуры, превышающей максимальную температуру на режиме. Испытуемый обтекатель с термодатчиками, установленный на подвижной теплоизолированной платформе, вводится в разогретую печь. Причем при вводе температура наружной поверхности обтекателя регулируется за счет перемещения подвижной платформы, а после достижения установившейся температуры наружной поверхности регулирование производится за счет изменения напряжения, подводимого к нагревателю печи. Технический результат - снижение требуемой электрической мощности и расширение возможностей регулирования режимом нагрева при проведении наземных тепловых испытаний обтекателей летательных аппаратов из неметаллических материалов. 1 ил.

 

Изобретение относится к технике наземных испытаний элементов летательных аппаратов (ЛА), а именно к способам воспроизведения аэродинамического теплового воздействия на головную часть (обтекатель) летательного аппарата в наземных условиях.

В настоящее время воспроизведение аэродинамического нагрева осуществляется в различных установках: аэродинамических трубах, баллистических установках, плазменных установках, стендах на основе сжигания топлива (прямоточных реактивных двигателях) (Статические испытания на прочность сверхзвуковых самолетов / А.Н. Баранов [и др.]. М.: Машиностроение. 1974. 344 с.; Материалы и покрытия в экстремальных условиях. Взгляд в будущее: В 3 т. Т.З. Экспериментальные исследования / Ю.В. Полежаев, С.В. Резник, А.Н. Баранов и др., Под ред. Ю.В. Полежаева и С.В. Резника. М.: Изд-во МГТУ им. Н.Э. Баумана, 2002. 264 с.: ил.). Испытание натурных конструкций в таких установках требует огромных материальных затрат, поэтому широкого распространения в практике наземных испытаний эти установки не получили.

Наиболее широкое распространение в практике наземных испытаний получили стенды радиационного нагрева, так как они просты в эксплуатации, позволяют достаточно легко изменять конфигурацию нагревателя в зависимости от геометрии конструкции обтекателя. Однако стандартные стенды радиационного нагрева (на базе ламп инфракрасного излучения) имеют ряд ограничений. Для элементов летательных аппаратов сложной формы, когда геометрические размеры конструкции сравнимы с размерами нагревателей, присутствует большая погрешность задания температурного поля. Кроме того, при задании высоких температур, (выше температуры смягчения кварца) инфракрасные нагреватели выходят из строя.

Наиболее близким по технической сущности является способ теплового нагружения обтекателей ракет из неметаллических материалов (патент РФ №2517790, МПК7 G01M 9/04, G01N 25/72, опубл. 27.05.2014 г.).

Тепловое нагружение осуществляют за счет пропускания электрического тока через эквидистантный поверхности обтекателя нагреватель в виде токопроводящей тонкостенной оболочки переменной толщины по высоте, контактирующей с ограничителем из теплоизоляционного материала, также эквидистантным наружной поверхности обтекателя, токопроводящая тонкостенная оболочка расположена к наружной поверхности обтекателя с зазором, в который нагнетают инертный газ под давлением, а ограничитель из теплоизоляционного материала выполнен пористым.

Недостатком способа является необходимость подведения большой электрической мощности к нагревателю для воспроизведения участков режима с высоким темпом нагрева.

Техническим результатом заявляемого изобретения является снижение требуемой электрической мощности и расширение возможностей регулирования режима нагрева при проведении наземных тепловых испытаний обтекателей летательных аппаратов из неметаллических материалов.

Указанный технический результат достигается тем, что в способе теплового нагружения обтекателей летательных аппаратов из неметаллических материалов, включающий нагрев наружной поверхности обтекателя и измерение температуры, отличающийся тем, что температурный режим воспроизводится в печи, которая предварительно разогревается (без обтекателя) до температуры превышающей максимальную температуру на режиме, после испытуемый обтекатель (с термодатчиками), установленный на подвижной теплоизолированной платформе, вводится в разогретую печь, причем при вводе температура наружной поверхности обтекателя регулируется за счет перемещения подвижной платформы, а после достижения установившейся температуры наружной поверхности регулирование производится за счет изменения напряжения, подводимого к нагревателю печи.

Предлагаемый способ отличается от прототипа тем, что позволяет уменьшить требуемую электрическую мощность, подводимую к нагревателю, за счет возможности накопления (аккумулирования) тепла в печи, причем процесс накопления тепла может быть очень продолжительным. После достижения температуры в печи превышающей максимальную температуру на режиме, обтекатель, установленный на подвижной теплоизолированной платформе, вводится в печь. Таким образом, воспроизводится участок режима с высоким темпом нагрева.

Предлагаемый способ расширяет возможности регулирования режима нагрева за счет перемещения подвижной платформы с установленным на ней обтекателем, где на участке нагрева обтекатель вводится в печь, на участке охлаждения - выводится из печи. При нахождении обтекателя в печи и после достижения установившейся температуры наружной поверхности регулирование производится за счет изменения напряжения, подводимого к нагревателю печи.

На фигуре представлена схема, иллюстрирующая предложенный способ. Обтекатель 1, закрепленный на подвижной теплоизолированной платформе 5, вводится в предварительно нагретую печь 2, причем температура в печи контролируется термодатчиком 4. Печь 2 смонтирована на стойке 6, установленной на полу 7. После достижения установившейся температуры наружной поверхности обтекателя регулирование режимом нагрева производится за счет изменения напряжения, подводимого к нагревателю печи 3.

Заявленный способ дает возможность более точно воспроизвести аэродинамический нагрев обтекателей летательных аппаратов из неметаллических материалов при малом энергопотреблении.

Способ теплового нагружения обтекателей летательных аппаратов из неметаллических материалов, включающий нагрев наружной поверхности обтекателя и измерение температуры, отличающийся тем, что температурный режим воспроизводится в печи, которая предварительно разогревается без обтекателя до температуры, превышающей максимальную температуру на режиме, после испытуемый обтекатель с термодатчиками, установленный на подвижной теплоизолированной платформе, вводится в разогретую печь, причем при вводе температура наружной поверхности обтекателя регулируется за счет перемещения подвижной платформы, а после достижения установившейся температуры наружной поверхности регулирование производится за счет изменения напряжения, подводимого к нагревателю печи.



 

Похожие патенты:

Группа изобретений относится к области неразрушающего контроля и может быть использована для идентификации близких к поверхности дефектов в контролируемом объекте.

Изобретение относится к прогнозированию и управлению состоянием буровой площадки. Техническим результатом является повышение эффективности прогнозирования и управления состоянием буровой площадки.

Изобретения относятся к измерительной технике. Способ заключается в измерении местоположения по глубине преграды слоя нитей, имеющих наибольшее энергопоглощение.

Группа изобретений относится к области неразрушающего контроля и может быть использована для идентификации близких к поверхности дефектов в контролируемом объекте.

Изобретение относится к области контроля технологических процессов и касается диагностического устройства для обнаружения состояния технологического трубопровода.

Изобретение относится к кабельным сетям и может быть использовано для предотвращения распространения пожара в смежные помещения через кабельные уплотнительные коробки (герметичный ввод, гермоввод, кабельные коробки), например, на морских судах.

Изобретение относится к технике для проведения испытаний, а именно для исследования устойчивости к воздействию резких температурных колебаний, и может быть использовано при испытаниях на термоудар приборов космического назначения.

Изобретение относится к области контроля качества изделий и касается установки неразрушающего контроля. Установка предназначена для неразрушающего контроля деталей газотурбинного двигателя и выполнена с возможностью проведения контроля места соединения между основным материалом, сформированным из армированного волокном материала, и металлическим соединяемым материалом.
Изобретение относится к области определения теплофизических характеристик ограждающих конструкций и может быть использовано в строительстве для оценки теплозащитных свойств по результатам испытаний в натурных условиях.

Изобретение относится к технике наземных испытаний элементов летательных аппаратов (ЛА), а именно к воспроизведению тепловых режимов головной части (обтекатель) ракеты в наземных условиях.
Изобретение относится к области сертификационных испытаний авиационной техники и, в частности, к технологии имитации атмосферного облака, а также имитации перемежающейся облачности при испытаниях противообледенительных систем основных узлов летательного аппарата и его двигателя на наземных стендах.

Изобретение относится к области аэродинамических испытаний и предназначено для использования в аэродинамических трубах для формирования градиента скорости воздушного потока.

Изобретение относится к технике наземных испытаний элементов летательных аппаратов (ЛА), а именно к воспроизведению тепловых режимов головной части (обтекатель) ракеты в наземных условиях.

Изобретение относится к технике наземных испытаний элементов летательных аппаратов (ЛА), а именно к воспроизведению тепловых режимов головной части (обтекатель) ракеты в наземных условиях.

Изобретение относится к испытательной технике, в частности к испытательным стендам для аэродинамических испытаний транспортных средств, а именно к покрытиям стендов.

Изобретение относится к экспериментальной аэродинамике, в частности к устройствам для изменения положения испытываемой модели в рабочей части аэродинамической трубы.

Изобретение относится к методике теплопрочностных испытаний носовых обтекателей и передних кромок воздухозаборника гиперзвуковых летательных аппаратов (далее ГЛА) с помощью инфракрасных нагревателей по программе гиперзвукового полета и касается способа создания большой величины плотности теплового потока (4-5 МВт/м2) и последующей передачи его на испытываемый объект в очень короткий срок (менее 0,1 с), в частности, на самую переднюю часть носового обтекателя или переднюю кромку воздухозаборника.

Изобретение относится к аэродинамике летательных аппаратов сверхзвуковых и околозвуковых скоростей. Способ торможения сверхзвукового потока заключается в создании скачков уплотнения, движущихся относительно обтекаемой поверхности в направлении течения, со значениями скоростей меньшими разницы значений скоростей потока и скоростью звука перед скачками уплотнения.

Изобретение относится к технике наземных испытаний элементов летательных аппаратов и может быть использовано при наземных испытаниях элементов летательных аппаратов.

Изобретение относится к технике наземных испытаний элементов летательных аппаратов (ЛА) и может быть использовано для проектирования аэродинамического теплового воздействия на головную часть (обтекатель) ракеты в наземных условиях.
Наверх