Электрохимический способ получения микрокристаллического порошка кремния



Электрохимический способ получения микрокристаллического порошка кремния
Электрохимический способ получения микрокристаллического порошка кремния
Электрохимический способ получения микрокристаллического порошка кремния
Электрохимический способ получения микрокристаллического порошка кремния
C25B1/00 - Электролитические способы; электрофорез; устройства для них (электродиализ, электроосмос, разделение жидкостей с помощью электричества B01D; обработка металла воздействием электрического тока высокой плотности B23H; обработка воды, промышленных и бытовых сточных вод или отстоя сточных вод электрохимическими способами C02F 1/46; поверхностная обработка металлического материала или покрытия, включающая по крайней мере один способ, охватываемый классом C23 и по крайней мере другой способ, охватываемый этим классом, C23C 28/00, C23F 17/00; анодная или катодная защита C23F; электролитические способы получения монокристаллов C30B; металлизация текстильных изделий D06M 11/83; декоративная обработка текстильных изделий местной

Владельцы патента RU 2671206:

федеральное государственное бюджетное образовательное учреждение высшего образования "Кабардино-Балкарский государственный университет им. Х.М. Бербекова" (КБГУ) (RU)

Изобретение относится к электрохимическому способу получения микрокристаллического порошка кремния, включающему электролиз расплава, содержащего хлорид, фторид и фторсиликат калия, диоксид кремния. Способ характеризуется тем, что процесс электролиза проводят из расплава, содержащего следующее соотношение компонентов, моль %: хлорид калия 38,2; фторид калия 46,3; фторсиликат калия 14,5-15,0; диоксид кремния 0,5-1,0. Процесс ведут при температуре 700°С, плотности тока от 0,5 А/см2 и потенциалах электролиза относительно стеклоуглеродного электрода сравнения. Технический результат изобретения заключается в возможности получения микрокристаллического кремния при более низкой температуре. 3 пр., 7 ил.

 

Изобретение относится к высокотемпературной электрохимии и может быть использовано для получения микрокристаллического кремния, обладающего способностью поглощать ультрафиолетовое (УФ) излучение. Данное свойство позволяет использовать его в различных областях техники, медицине, парфюмерной промышленности и наноэлектронике [Пархоменко Ю.Н. Получения и свойства нанокристаллического кремния / Наноматериалы и нанотехнология / 2009 г, с. - 46.].

Пристальное внимание к изучению свойств кремния объясняется тем, что он является весьма перспективным материалом для создания на его основе светоизлучающих устройств, совместимых с элементами стандартной кремниевой технологии. Но этим область его применения не ограничивается. В настоящее время возникла потребность в нанодисперсных порошках кремния кристаллической структуры в различных областях техники, где в первую очередь используется его способность поглощать ультрафиолетовое (УФ) излучение. Например, в парфюмерной промышленности порошки (нанодисперсные) кремния с кристаллической структурой можно использовать при изготовлении солнцезащитной косметики; в лакокрасочной промышленности введение таких порошков повышает стойкость цвета красок и предотвращает их быстрое выгорание; в текстильной промышленности изготовление красителей, содержащих нанокристаллический кремний, позволяет не только обеспечить стойкость и яркость цвета тканей, но и повысить их прочность. В автомобильной промышленности введение в лаки и краски нано- и микрокристаллических кремнийсодержащих добавок улучшает защитные функции покрытий, обеспечивающих стойкость цвета автомобиля и предотвращающих его разрушение под действием УФ-излучения.

Оборудование для современных информационных технологий (компьютеры, электроника, оптоэлектроника, телекоммуникации и т.д.), а также для солнечных электростанций более чем на 90% базируется на применении полупроводникового кремния. Иными словами, полупроводниковый кремний в разном виде (поликристаллический, монокристаллический, аморфный) является основой электронной компонентной базы всей современной электроники.

Известны способы получения кремния электрохимическим синтезом из расплавленных электролитов:

1. Исаков А.В., Чемезов О.В., Аписаров А.П., Поротникова Н.М, Зайков Ю.П. Электролитическое получение Si из фторидно-хлоридных расплавов солей. Характеристика электролитических осадков // Вопросы химии и химической технологии, 2011, №4(1), с. 214-215.

2. Иванов В.М., Трубицын Ю.В. Другие методы получения поликристаллического кремния // Современные тенденции развития промышленности поликристаллического полипроводникового кремния. У.: Научный вестник, 2009, с. - 34.

3. Прутцков Д.В., Андрийко А.А., Делимарский Ю.К., Чернов Р.В. Электровосстановление соединений кремния в расплаве Na3AlF6 - AlF3 - SiO2 // Укр. хим. журн. - 1985, - 51, №8, с. 826-830.

4. Chemezov O.V., Vinogradov-Jabrov O.N., Apisarov A.P., Isakov A.V., Plaxin S.V., Malkov V.B., Zaikov Yu.P. // Structure nano- and micro-crystalline silicon deposits obtained by electrolytic refining in the KCl - CsCl - KF - K2SiF6 melt // Proceeding Silicon for the Chemical and Solar Industry X, - Geiranger, Norway June 28 - July 2, 2010, EdH. , H.Brekken, L.Nygaard // Department of Materials Science and Engineering Norwegian University of Science and Technology, N-7491, Trondheim, Norway, 2010, P. 71-77.

5. Chemezov O.V., Apisarov A.P., Isakov A.V., Zaikov Yu. P. Structure silicondeposits obtained by electrolysis SiO2 in the chloride-fluoride melts // EPDCongress 2012, TMS (The Minerals, metals & Materials Society), SymposiumSilicon Production, Purification & Recycling for Photovoltaic Cells», USAOrlando FL, March 11 to 15, 2012, P. 493-498.

Общим недостатком аналогов высокие энергозатраты, низкий выход кремния в целевой продукт, многостадийность и цикличность производства, требующая значительных трудозатрат.

Наиболее близким по технической сути является способ получения кремния в виде покрытия электролизом расплава NaCl - Na3AlF6 - SiO2, отличающийся тем, что процесс ведут при 900°С. Покрытия были осаждены из расплава NaCl - Na3AlF6 - 0,5÷1,0% (масс.) SiO2. Светло-серые мелкокристаллические кремниевые покрытия образуются при плотностях тока (1-8)⋅10-2А/см2. При меньшей плотности тока скорость осаждения незначительна, а при большей - покрытие быстро перерастает в дендриты. Скорость осаждения покрытий в указанном интервале плотности тока составляет 10-40 мкм/ч, выход по току в виде покрытия до 70-80%. Кремниевые покрытия получены на образцах стеклоуглерода, графита, никеля, меди, молибдена, вольфрама, стали [Кушхов Х.Б., Малышев В.В., Гасвияни С.Г., Шаповал В.И., Гасвияни Н.А. Электроосаждение кремниевых покрытий из расплава NaCl - Na3AlF6 - SiO2 // Электровосстановление ионов кремния на фоне расплава NaCl - Na3AlF6. УКР, Хим. Журн., 1991, Т. - 57, №10, с. - 1100].

Продолжительность электролиза 1 час. Недостатком прототипа является высокая температура ведения процесса.

Задачей изобретения является получение микрокристаллического кремния при более низкой температуре.

Задача решается следующим образом: предлагается расплав для электрохимического синтеза микрокристаллического кремния, который содержит хлорид калия, фторид калия, фторсиликат калия и диоксид кремния со следующим соотношением компонентов, моль %:

хлорид калия 38,2

фторид калия 46,3

фторсиликат калия 15,0-14,5

диоксид кремния 0,5-1,0

Для получения микрокристаллического кремния высокой дисперсности обязательным условием является ведение электролиза при высоком катодном токе. Процесс электролиза сопровождался возникновением анодного эффекта - результат поляризации анода, который характеризуется внезапным увеличением напряжения и соответствующим уменьшением силы тока благодаря аноду, отделенному от электролита газовой пленкой. Для устранения данной проблемы в расплав вводился диоксид кремния. Опытным путем была подобрана оптимальная концентрация диоксида кремния в данной системе.

Электролит готовят расплавлением в электропечи смеси хлорида, фторида, фторсиликата калия и диоксида кремния в стеклоуглеродном тигле. По достижении 700°С в расплав погружают электроды. Электролиз осуществляется в открытых ваннах в гальваническом режиме при плотности катодного тока 0,5 А/см2, температуре 700°С со стеклоуглеродным анодом и при использовании в качестве катода стеклоуглеродной пластинки или вольфрамового стержня.

Электровыделение кремния из хлоридно-фторидного расплава наблюдается при введении в электролит оксида кремния с концентрацией 1 мол. % в стеклоуглеродном тигле при температуре 700°С. Плотность тока равна 0,5 А/см2. Время проведения электролиза 60 мин.

Реакции, протекающие при электрохимическом синтезе, описываются следующими уравнениями: на катоде:

процесс электрохимического восстановления комплексов SiF62- в расплаве KCl-KF-K2SiF6 можно описать общей схемой:

Пример 1. Электрохимический способ получения порошка микрокристаллического кремния осуществляют в электролите содержащем, моль %: KCl - 38,2; KF - 46,3; K2SiF6 - 15,0; SiO2 - 0,5. Температура 700°С. Катод - вольфрамовый стержень диаметром 0,4 см. Анод - стеклоуглеродная пластинка (далее - CY). Плотность тока 0,5 А/см2. Продолжительность электролиза составляет 30 мин, после чего из расплава вынимают катодно-солевую «грушу» фиг. 5. После полного остывания до комнатной температуры катодно-солевую «грушу» отмывают горячей дистиллированной водой. После чего порошок микрокристаллического кремния высушивают в сушильном шкафу при температуре 150°С.

Пример 2. Электрохимический способ получения порошка микрокристаллического кремния осуществляют в электролите содержащем, моль %: KCl - 38,2; KF - 46,3; K2SiF6 - 14,8; SiO2 - 0,7. Температура 700°С. Катод - вольфрамовый стержень диаметром 0,4 см. Анод - стеклоуглеродная пластинка. Плотность тока 0,5 А/см2.

Продолжительность электролиза составляет 60 мин, после чего из расплава вынимают катодно-солевую «грушу». После полного остывания до комнатной температуры катодно-солевую «грушу» отмывают горячей дистиллированной водой. После чего порошок микрокристаллического кремния высушивают в сушильном шкафу при температуре 150°С.

По данным рентгенофазового анализа катодный осадок состоит из микрокристаллического кремния Si. Результаты дисперсионного анализа показали, что размер полученных частиц порошков кремния находится в интервале: 0,05-0,3 микрон.

Пример 3. Электрохимический способ получения порошка микрокристаллического кремния осуществляют в электролите содержащем, моль %: KCl - 38,2; KF - 46,3; K2SiF6 - 14,5; SiO2 - 1,0. Температура 700°С. Катод - вольфрамовый стержень диаметром 0,4 см. Анод - стеклоуглеродная пластинка. Плотность тока 0,5 А/см2.

Продолжительность электролиза составляет 60 мин, после чего из расплава вынимают катодно-солевую «грушу». После полного остывания до комнатной температуры катодно-солевую «грушу» отмывают горячей дистиллированной водой. После чего порошок микрокристаллического кремния высушивают в сушильном шкафу при температуре 150°С.

Результаты анализа полученных образцов

Методами рентгенофазового и рентгенофлуоресцентного анализа установлен фазовый и элементный состав полученных образцов.

По данным рентгенофазового анализа катодный осадок состоит из микрокристаллического кремния Si. На фиг. 1, 3 представлены результаты рентгенофлуоресцентного анализа образцов, полученных электролизом расплава, моль %: KCl - 38,2; KF - 46,3; K2SiF6 - 14,5; SiO2 - 1,0, при температуре 700°С. Анод - CY, катод - W; i=0,5 А/см2.

По данным рентгенофлуоресцентного анализа установлен элементный состав образцов. На фиг. 2, 4 представлены рентгенограммы катодного осадка, полученных электролизом расплава, моль %: KCl - 38,2; KF - 46,3; K2SiF6 - 14,5; SiO2 - 1,0 при температуре 700°С. Анод - CY, катод - W; i=0,5 А/см2.

Снимки полученных образцов кремния, сделанные на микроскопе МБС-10 с увеличением в 200 раз. Фиг. 6.

Проведен также дисперсионный анализ порошков микрокристаллического кремния, полученных электровосстановлением ионов кремния в расплаве KCl (45,2 мол %) - KF (54,8 мол %) - K2SiF6 (15 мол %) - SiO2 (1 мол. %) методом гальваностатического электролиза при температуре 700°С. Фиг 7.

Результаты дисперсионного анализа показали, что размер полученных частиц порошков кремния находится в интервале: 0,05-0,3 микрон.

Технический результат изобретения заключается в возможности получения микрокристаллического кремния при температуре 700°С, где в качестве источника кремния используется фторсиликат калия и диоксид кремния при плотности тока 0,5 А/см2, а также показана в возможность электровосстановления ионов кремния их хлоридно-фторидных расплавов, подобрана оптимальная концентрация оксида кремния SiO2 для эффективного ведения процесса электролиза с целью получения микрокристаллического кремния.

Электрохимический способ получения микрокристаллического порошка кремния, включающий электролиз расплава, содержащего хлорид, фторид и фторсиликат калия, диоксид кремния, отличающийся тем, что процесс электролиза проводят из расплава, содержащего следующее соотношение компонентов, моль %:

хлорид калия 38,2
фторид калия 46,3
фторсиликат калия 14,5-15,0
диоксид кремния 0,5-1,0,

процесс ведут при температуре 700°С, плотности тока от 0,5 А/см2 и потенциалах электролиза относительно стеклоуглеродного электрода сравнения.



 

Похожие патенты:

Изобретение относится к способу электролиза с электролизной ячейкой, проводимого в диапазоне температур от 300°С до 1500°С. Способ включает: подвод реактанта к электролизной ячейке, причем на катоде электролизной ячейки образуется газообразный продукт (Н2, СО), а на аноде электролизной ячейки кислород (О2), по меньшей мере, частичный вывод кислорода (О2) посредством, по меньшей мере, одного подводимого к электролизной ячейке первого промывающего агента, причем, по меньшей мере, первый промывающий агент инертен по отношению к кислороду (О2), по меньшей мере, частичное разделение смеси промывающего агента и кислорода (60-О2) в разделительном устройстве на составные части - кислород (О2) и по крайней мере первый промывающий агент, рециркуляцию путем повторного подвода отделенного, по меньшей мере, первого промывающего агента в электролизную ячейку и выведение из процесса отделенного кислорода (О2).

Группа изобретений относится к способу формирования твердооксидных топливных элементов с металлической опорой. Способ формирования твердооксидного топливного элемента с металлической опорой включает нанесение на металлическую подложку из фольги слоя зеленого анода, содержащего оксид никеля и оксид церия, легированный редкоземельным элементом; предварительный обжиг слоя анода в условиях невосстановительной среды для формирования композитного материала; обжиг композитного материала в восстановительной среде для формирования спеченного металлокерамического материала; обеспечение электролита и обеспечение катода.

Изобретение может быть использовано в химической промышленности. Трехкамерная электролитическая ячейка используется для производства окисляющих дезинфицирующих растворов.

Изобретение относится к компоненту алюминиевого электролизера, содержащему от 0,01 до менее чем 0,5 вес.% добавок металлов, причем добавки металлов выбраны из группы, состоящей из Cr, Mn, Mo, Pt, Pd, Fe, Ni, Co и W и их комбинаций; остальным являются TiB2 и неизбежные примеси, причем неизбежные примеси составляют менее 2 вес.% компонента; при этом компонент имеет плотность от по меньшей мере 85% до не более чем 99% от его теоретической плотности.

Изобретение относится к электронике и нанотехнологии и может быть использовано в 2D-печати. Сначала получают графеновые частицы электрохимическим расслоением графита, характеризующегося массой чешуек около 10 мг, в жидкой фазе с использованием в качестве электролита водного 0,00005-0,05 М раствора (NH4)2S2O8, в течение 10 мин и менее, при напряжении не более 15 В и подаче на графитовый электрод положительного напряжения.
Изобретение относится к способу изготовления неокисляющих частиц. Способ содержит сильный окислитель, классифицируемый как PG I согласно стандартному методу исследования руководства ООН по испытаниям и критериям, пятое исправленное издание, подраздел 34.4.1, и по меньшей мере один дополнительный ингредиент.

Изобретение относится к области химии и технологии получения порошков оксида алюминия для изготовления конструкционной и функциональной керамики на основе оксида алюминия, катализаторов, а также в производстве лейкосапфира.

Система для стравливания давления и отвода энергии из трубопроводов природного газа или для применения в криогенной промышленности содержит электролизер, генерирующий водород, тепловой насос, нагревательное устройство, выполненное с возможностью нагревания природного газа в трубопроводе.

Изобретение относится к системе и способу для распределения нагрузки импульсной возобновляемой энергии для электрической сети. Система для обеспечения энергии для энергосети, исходя из энергии, подаваемой возобновляемым источником энергии, содержит: блок для получения водорода и азота, где блок для получения водорода и азота функционирует за счет использования энергии, подаваемой возобновляемым источником энергии; блок смесителя, сконфигурированный для приема и смешивания водорода и азота, с образованием водородно-азотной смеси; источник NH3 для приема и обработки водородно-азотной смеси для генерирования газовой смеси, содержащей NH3; энергогенератор на основе NH3, причем энергогенератор на основе NH3 содержит камеру сгорания, для сжигания полученного NH3 из потока газа, для генерирования энергии для энергосети.

Изобретение относится к электролитическому способу получения наноразмерных порошков интерметаллидов лантана с кобальтом, включающему синтез интерметаллидов лантана с кобальтом из расплавленных сред в атмосфере очищенного и осушенного аргона при температуре 700°С.
Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул сухого экстракта левзеи в оболочке из альгината натрия.
Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул сухого экстракта барбариса в оболочке из альгината натрия.
Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул нитроаммофоски в оболочке из каррагинана.

Изобретение относится к промышленности огнеупорных материалов, а именно жаростойким бетонам, и может быть использовано при изготовлении изделий из шамотного жаростойкого бетона.
Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул сухого экстракта дикого ямса в оболочке из альгината натрия.
Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул сухого экстракта заманихи в оболочке из альгината натрия.

Изобретение относится к электронной технике, в частности к суперконденсаторам. Изобретение может быть использовано в энергетике, при создании высокоэффективных генераторов и накопителей электрической энергии, в автономных мобильных миниатюрных слаботочных источниках питания, применяемых в системах микроэлектроники.

Изобретение относится к нанотехнологии и может быть использовано при изготовлении полимерных композитов. Углеродные нанотрубки окисляют смесью азотной и серной кислот с образованием карбоксильных функциональных групп, ковалентно связанных с их поверхностью.
Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул сухого экстракта можжевельника в оболочке из альгината натрия.

Изобретение относится к жаростойким бетонам. Состав для изготовления корундового жаростойкого бетона, включающий: связующее, электроплавленный корундовый заполнитель, тонкомолотый электроплавленный корунд, тонкомолотый технический глинозем, тонкомолотый диатомит и нагретую воду, содержит в качестве связующего коллоидный полисиликат натрия с силикатным модулем 6,5, полученный путем введения в 20%-ный водный раствор силиката натрия 16%-ного гидрозоля диоксида кремния в соотношении 1:1,6, перемешивания при 100°С в течение 3,0 ч с выдержкой при указанной температуре не более 0,5 ч, и дополнительно - природный аморфный тонкодисперсный кремнезем с содержанием 20% нанодисперсных частиц, имеющий следующий химический состав, мас.
Изобретение относится к полимерной промышленности и может быть использовано для защиты от теплового, светового, озонного и атмосферного старений резинотехнических изделий и регенерации резины при хранении сельскохозяйственной техники на открытых площадках. Защитная смесь содержит компоненты при следующем соотношении, мас. %: парафин - 92; жидкая резина - 7; нанопорошок - 1. Нанопорошок состоит из наночастиц углерода - 4 мас. % и железа - 96 мас. % с удельной поверхностью БЭТ около 10 м2/г и температурой плавления - 1550°С. Обеспечивается повышение проникающей способности смеси, адгезии к поверхности резинотехнических изделий и снижение скорости старения резины.
Наверх