Способ определения коррозионной стойкости бетона

Изобретение относится к области исследования физико-химических и эксплуатационных свойств бетона в условиях воздействия на образец жидких агрессивных растворов. Способ заключается в том, что движение потока жидкости в установке самотеком происходит по горизонтальной поверхности четырех идентичных образцов, позволяющих определить глубину коррозионного поражения бетона в четыре срока наблюдения, при котором ламинарный поток обеспечивает постоянство концентрации агрессивного раствора у поверхности испытуемых образцов, кроме того, для сохранения во времени площади поверхности образцов, контактирующей с агрессивным раствором, агрессивный раствор воздействует только на одну верхнюю грань образцов, а о стойкости бетона судят по отношению разности концентраций агрессивного вещества жидкой среды, поступающего и вытекающего из реакционного сосуда с образцами, к количеству агрессивного вещества, необходимого для повреждения одной единицы площади поверхности бетона. Достигается возможность проведения ускоренных испытаний в условиях, характерных для конструкций, вдоль поверхности которых происходит безнапорное или самотечное движение агрессивной жидкости. 1 ил.

 

Изобретение относится к области исследования физико-химических и эксплуатационных свойств бетона в условиях воздействия на образец жидких агрессивных растворов.

Известен способ определения стойкости бетона к воздействию водных растворов солей, который создает циклический поток агрессивного раствора при переменно следуемых положительных и отрицательных напорах и давлении, равном предельно выдерживаемому бетону, соответствующему его марке по водонепроницаемости, а о стойкости бетона судят по количеству циклов, приводящих к появлению воды на поверхности испытуемого образца [А.с. 996941, от 07.05.1981, M. Кл.3 G01n 33/38, Бюллетень №6, опубл. от 15.02.1983].

Недостатком данного изобретения является то, что за короткий промежуток времени происходит разрушение бетонного конгломерата, не только за счет коррозии, но и за счет напора и давления жидкости, что не соответствует безнапорным (самотечным) железобетонным трубопроводам.

Известен также метод определения коррозионной стойкости бетона в растворах кислот (п. 5, ГОСТ Р 52804-2007 «Защита бетонных и железобетонных конструкций от коррозии. Методы испытаний»), который основан на измерении скорости изменения химического состава раствора кислоты и цементного камня в бетоне, погруженном в раствор кислоты заданной концентрации при диффузионном переносе агрессивного вещества в бетоне.

Недостатком известного метода является то, что в нем регламентируется проводить испытания материалов в условиях, исключающих постоянный поток жидкой агрессивной среды, омывающей испытуемые образцы. Кроме того, конструкции сооружений водоотведения и водоочистки постоянно подвергаются воздействию жидких агрессивных сред, постоянно перемещающихся относительно конструкций, т.е. омывающих бетон. Наряду с этим, непрерывный поток жидкости, проходящий вдоль конструкций (или испытуемого образца), может значительно ускорять коррозию, тем самым приводя к преждевременному износу конструкций.

Наиболее близким к заявленному изобретению является способ определения коррозионной стойкости бетона в агрессивных жидких средах, включающий воздействие потоком агрессивного раствора на поверхность испытуемого образца, при этом с целью прогнозирования срока службы строительных конструкций, определяют отношение разности концентраций агрессивного вещества жидкой среды, поступающей и вытекающей из сосуда, с образцом к количеству агрессивного вещества, необходимого для повреждения одной весовой единицы бетона [А.с. 280968, от 07.09.1968, МПК G01n 17/00, Бюллетень №28, опубл. от 03.09.1970].

Недостатком способа является то, что с позиции механики жидкости, а именно гидродинамики, затруднено математическое описание режима и характера течения жидкости, омывающей испытуемый образец, вследствие несовершенства геометрических параметров реакционного сосуда (емкости), в котором происходит контакт движущейся агрессивной жидкости с испытуемым образцом. Кроме того, не обеспечены постоянство концентрации агрессивного раствора у поверхности образца, возможность изменения скорости движения потока, сохранение во времени площади поверхности образца, контактирующей с агрессивным раствором.

Задачей изобретения является устранение вышеуказанных недостатков и создание способа определения коррозионной стойкости бетона, позволяющего проводить ускоренные испытания в условиях, характерных для конструкций, вдоль поверхности которых, происходит безнапорное или самотечное движение агрессивной жидкости.

Поставленная задача достигается тем, что в способе определения коррозионной стойкости бетона, включающем воздействие потоком агрессивного раствора на поверхность испытуемых образцов и наблюдение за изменением во времени характеристики, чувствительной к деструкции бетона, согласно изобретению движение потока жидкости в установке самотеком происходит по горизонтальной поверхности четырех идентичных образцов, позволяющих определить глубину коррозионного поражения бетона в четыре срока наблюдения, при котором ламинарный поток обеспечивает постоянство концентрации агрессивного раствора у поверхности испытуемых образцов. Кроме того, для сохранения во времени площади поверхности образцов, контактирующей с агрессивным раствором, воздействие производят только на одну верхнюю грань образцов, а о стойкости бетона судят по отношению разности концентраций агрессивного вещества жидкой среды, поступающего и вытекающего из реакционного сосуда с образцами, к количеству агрессивного вещества, необходимого для повреждения одной единицы площади поверхности бетона.

Сущность способа поясняется на фигуре, где приведена принципиальная схема установки для испытания бетона.

Установка состоит из рабочей емкости 1; вкладыша-формы 2 для исследуемых образцов; расходной емкости с агрессивным раствором 3, емкости для слива отработанного раствора 4; запорноговентиля 5; системы гибких трубок 6; крана 7; четырех испытуемых одинаковых бетонных образцов-кубов 8,стандартного размера 5×5×5 см; пористой мембраны 9; хлоркальциевых трубок с натронной известью 10.

В расходной емкости 3 содержится запас агрессивного раствора. Для возможности подачи требуемого объема агрессивного раствора необходим запорный вентиль 5 и система гибких трубок 6. Рабочая емкость 1 выполняет в установке функцию «реактора», в нее помещается вкладыш-форма 2 с четырьмя одинаковыми бетонными образцами 8, которые необходимо подвергнуть процессу коррозии. Для сохранения во времени площади контактируемой поверхности бетонных образцов с агрессивным раствором, протекающий ламинарный поток агрессивного раствора воздействует только на одну верхнюю их грань. Пористая мембрана 9 обеспечивает ламинарность потока агрессивной жидкости в рабочей емкости. Для выпуска воздуха из реакционной емкости установлен кран 7. В емкость 4 стекает отработанный раствор. В случае необходимости следует предусмотреть изоляцию емкостей от СO2 воздуха посредством хлоркальциевых трубок 10 с натронной известью. Последовательно удаляя бетонные образцы из рабочей емкости в процессе эксперимента, мы сможем определить глубину коррозионного поражения в четыре срока наблюдения, тем самым повысив точность прогнозирования срока службы строительных конструкций. Для прогнозирования срока службы строительных конструкций определяют отношение разности концентраций агрессивного вещества жидкой среды, поступающей и вытекающей из реакционного сосуда с образцами, к количеству агрессивного вещества, необходимого для повреждения одной единицы площади поверхности бетона. Полученный результат - объем поврежденного бетона - пересчитывают с учетом площади реакционной поверхности образцов на глубину поражения.

Предложенный способ позволяет прогнозировать глубину поражения бетона на любой срок эксплуатации конструкций, при этом обеспечены постоянство концентрации агрессивного раствора у поверхности образцов, возможность изменения скорости движения потока, сохранение во времени площадей поверхности образцов, контактирующих с агрессивным раствором.

Способ определения коррозионной стойкости бетона, включающий воздействие потоком агрессивного раствора на поверхность испытуемых образцов и наблюдение за изменением во времени характеристики, чувствительной к деструкции бетона, отличающийся тем, что движение потока жидкости в установке самотеком происходит по горизонтальной поверхности четырех идентичных образцов, позволяющих определить глубину коррозионного поражения бетона в четыре срока наблюдения, при котором ламинарный поток обеспечивает постоянство концентрации агрессивного раствора у поверхности испытуемых образцов, кроме того, для сохранения во времени площади поверхности образцов, контактирующей с агрессивным раствором, агрессивный раствор воздействует только на одну верхнюю грань образцов, а о стойкости бетона судят по отношению разности концентраций агрессивного вещества жидкой среды, поступающего и вытекающего из реакционного сосуда с образцами, к количеству агрессивного вещества, необходимого для повреждения одной единицы площади поверхности бетона.



 

Похожие патенты:

Группа изобретений относится к области литейного производства и предназначена для расчета свойств формовочных песков и компонентного состава формовочных и/или стержневых смесей при помощи устройства для расчета свойств формовочных песков и/или компонентного состава формовочных и/или стержневых смесей и машиночитаемого носителя данных для его осуществления.

Изобретение относится к области исследования процессов твердения цементов и может быть использовано для контроля качества бетонных и железобетонных изделий. Образец исходного сухого цемента затворяют водой и подвергают твердению в воздушно-влажных условиях.

Изобретение относится к оперативному определению количества содержания цемента в грунтоцементной конструкции, созданной струйной цементацией. При проведении струйной цементации из количества цемента, необходимого для создания подземной строительной конструкции, замешивают цементный раствор с добавлением в него химического элемента, содержание которого в грунте не превышает 0,1% и в количестве, определяемом рентгенофлуоресцентным анализом, производят бурение лидерной скважины до проектной отметки и в процессе обратного хода в буровую колонну под высоким давлением подают цементный раствор для образования в грунте строительной конструкции, при этом из грунта выделяется грунтоцементная пульпа, отбирают пробу цементного раствора и грунтоцементной пульпы, рентгенофлуоресцентным методом производят измерение весовой концентрации химического элемента в пробах и плотности материалов проб, производят замер верхней части возведенной конструкции, вычисляют ее площадь, а затем количество цемента (в сухом состоянии), содержащееся в 1 м3 подземной конструкции, рассчитывают из заданного соотношения.

Изобретение относится к способам оценки состояний теплоизоляции стен зданий и сооружений с учетом степени их увлажнения, которая изменяется в процессе эксплуатации зданий и сооружений.

Изобретение относится к определению механических параметров цементной системы как функции от времени и как функции от тонкости помола цементной системы, давления и/или температуры, являющихся репрезентативными для пластовых условий, имеющих место в стволе скважины.

Изобретение относится к способам экспрессного контроля объемной концентрации цементного раствора в грунтоцементной пульпе при создании подземных строительных конструкций струйной цементацией.

Изобретение относится к испытательной технике и может быть использовано в строительстве при расчете ограждающих конструкций зданий. Способ заключается в том, что в исследуемом месте ограждающей конструкции на всю глубину кирпичной кладки отбирают два керна, первый керн отбирают по центру ложковой стороны наружного ряда кирпичей, второй керн отбирают так, чтобы слой раствора находился в центре керна.

Изобретение относится к экспрессному контролю объемной концентрации цементного раствора в грунтоцементной пульпе при создании подземных строительных конструкций струйной цементацией.

Изобретение относится к методам испытаний строительных материалов в условиях лабораторий заводов - изготовителей. Способ заключается в погружении образцов строительных материалов в слабоагрессивную среду.

Изобретение относится к устройству, системе и способу для измерения влажности в конструкциях зданий. Трубчатый корпус (100) может быть внедрен в материал во время его отливки.

Группа изобретений относится к испытаниям трубных сталей на склонность к коррозионному растрескиванию под напряжением. В способе испытания трубных сталей на КРН вырезают образец из стенки трубы магистрального газопровода и/или из неэксплуатировавшейся трубы.

Группа изобретений относится к средствам для управления процессами в технологических установках. Способ разработки профиля прогнозируемого срока эксплуатации для компонента устройства управления процессом включает получение показания по меньшей мере одного эксплуатационного параметра компонента, который влияет на старение компонента, с течением времени, в процессе работы устройства управления процессом при технологической установке; получение рабочих условий в процессе эксплуатации, в которых компонент будет находиться в процессе работы устройства управления процессом; разработку, в устройстве для профилирования, протокола ускоренного испытания на старение на основании рабочих условий в процессе эксплуатации, в которых, как предполагается, компонент будет находиться, при этом протокол ускоренного испытания на старение предназначен для имитации отказа в работе данного компонента в рабочих условиях в процессе эксплуатации; получение, от системы ускоренного испытания, данных по ускоренному испытанию на старение, разработанных путем выполнения по меньшей мере одного протокола ускоренного испытания на старение на образце компонента; разработку, в устройстве для профилирования, профиля прогнозируемого срока эксплуатации для компонента на основании данных по ускоренному испытанию на старение; получение, на модуль оперативных данных, в процессе работы компонента при технологической установке, измеренных данных, включающих в себя данные, отображающие работоспособность компонента при использовании при технологической установке, или данные, отображающие условия, испытываемые компонентом в процессе работы устройства управления процессом при использовании при технологической установке; и определение, на определителе срока эксплуатации, значения прогнозируемого остаточного срока эксплуатации компонента на основе профиля прогнозируемого срока эксплуатации и измеренных данных.

Система (10a) поддержки использования металлических труб включает в себя: блок (11a) приема информации о металлических трубах для приема идентификационных данных каждой из множества металлических труб; блок (12a) приема условий использования для приема данных об условиях использования, указывающих на условие, при котором необходимо использовать металлические трубы; блок (13a) сбора специфических данных труб для доступа к блоку (2) записи данных, в котором связанным образом хранятся специфические данные труб, указывающие свойство каждой металлической трубы, и соответствующие идентификационные данные, и для получения специфических данных труб, связанных с полученными идентификационными данными; блок (14a) определения труб для определения металлической трубы, которую надлежит использовать, из множества металлических труб на основе специфических данных труб и данных об условиях использования; и блок (15a) вывода для вывода информации, относящейся к определенной металлической трубе.

Изобретение относится к способу, позволяющему оценивать остаточный срок службы трубы. Сущность: осуществляют этап (S1) установления внутреннего диаметра трубы, предназначенный для получения данных о внутреннем диаметре (D) трубы; степень деформации внутреннего диаметра (ΔD) трубы из разницы между внутренним диаметром трубы и исходным внутренним диаметром (D0) трубы; этап создания (S3a) диаграммы проекции деформации, предназначенный для построения графика проекции деформации при условиях, когда уширение трубы достигает предела удлинения (X) срока службы при произвольно прогнозируемом остаточном сроке службы (T); этап (S3b) определения стандартной степени деформации, предназначенный для получения данных о степени деформации (A), получаемых при определении внутреннего диаметра трубы в ходе этапа определения внутреннего диаметра трубы, в качестве стандарта для определения наличия/отсутствия прогнозируемого остаточного срока службы на основе диаграммы проекции деформации; этап (S3c) вычисления общей погрешности, предназначенный для определения суммарной погрешности (B) при получении внутреннего диаметра трубы; и этап (S4) определения остаточного срока службы, предназначенный для определения остаточного срока службы трубы на основе степени деформации внутреннего диаметра трубы, степени деформации, которая служит в качестве стандарта для определения наличия/отсутствия прогнозируемого остаточного срока службы, и суммарной погрешности.

Изобретение относится к измерению скорости коррозии деталей в различных средах. Система (100) измерения скорости коррозии включает расходуемый зонд (106), выполненный с возможностью подвергания его воздействию коррозионно-активного материала.

Изобретение относится к коррозионным исследованиям, а именно к способу установки образцов-свидетелей коррозии в трубопровод для определения коррозионной агрессивности исследуемых сред.

Изобретение относится к способам изучения старения асфальтобетонов (АБ) и других битумоминеральных материалов в лабораторных условиях предварительным выдерживанием асфальтобетонных и других битумоминеральных смесей при высоких температурах и может применяться для оценки сравнительной долговечности в стадии проектирования конструкций с их использованием.

Предлагаемый способ относится к эксплуатации нефтяных месторождений и может быть применен для оценки действительной скорости коррозии металла эксплуатационной колонны в различных интервалах ствола действующей скважины.

Изобретение относится к области мониторинга скорости коррозионного процесса в системах газо-, нефте- и теплоснабжения. Предложен способ мониторинга коррозии трубопровода, заключающийся в выполнении контрольных вырезок, в разделении контрольных вырезок на образцы, идентификации фаз продуктов коррозии, определении количества фаз продуктов коррозии, вычислении доли свободной поверхности, определении активной составляющей импеданса в щелочном электролите и ртути.

Изобретение относится к контрольно-измерительной технике и может быть использовано для количественной оценки коррозионного состояния элементов заземляющих устройств электроустановок подстанций различного вида и назначения без проведения вскрышных работ.

Изобретение относится к испытательной технике, в частности к исследованиям металлов на коррозионное растрескивание в сероводородсодержащих средах. Устройство содержит ячейку с герметично закрывающейся крышкой с расположенными на ее поверхности пазами для закрепления в них одного конца испытуемого образца и подвижный поршень с резьбовым соединением для закрепления в нем второго конца испытуемого образца. Подвижный поршень разделяет герметичную ячейку на рабочую камеру и демпфирующую. С целью набора и фиксации давления в рабочей камере, в герметично закрывающейся крышке предусмотрена манометрическая сборка, состоящая из манометра и игольчатого вентиля. Демпфирующая камера снабжена сбросным игольчатым вентилем с манометром. Сероводородсодержащий газ под давлением проходит через игольчатый вентиль манометрической сборки и поступает в рабочую камеру ячейки. Под действием давления газа подвижный поршень создает растягивающие напряжения в испытуемом образце. Нагрев ячейки осуществляется электрическим греющим кабелем. Технический результат - упрощение конструкции, расширение технологических возможностей и повышение точности путем исследований металлов на коррозионное растрескивание в сероводородсодержащих средах. 1 ил.
Наверх