Индексы структурного различия верхних зон заполнения ордовикского известняка и способ их определения

Изобретение относится к исследованию водосодержащих геологических структур. Представлен способ определения индексов структурного различия верхних зон заполнения Ордовикского известняка, согласно которому: сначала определяют три типа структур зоны заполнения, а именно структуру с непрерывным заполнением, структуру с прерывистым заполнением и структуру, свободную от заполнения; затем определяют индексы различия в соответствии с тремя типами структур зоны заполнения, включающие: величину q прорыва воды к скважине, величину расхода Q подземной воды и коэффициент K проницаемости участка Ордовикского известняка; затем соответственно определяют пороговые значения для каждого индекса в соответствии с различными водоупорными свойствами, соответствующими указанным трем структурам; причем индексы получают посредством нескольких этапов на основании расчета из заданных соотношений величин прорыва воды и коэффициента проницаемости для подземной скважины. Достигается простота осуществления способа и легкость его выполнения полевыми сотрудниками. 1 з.п. ф-лы, 5 ил., 6 табл.

 

Область техники

Настоящее изобретение относится к индексам структурного различия для водосодержащих геологических структур и способу их определения, в частности, к индексам структурного различия верхних зон заполнения Ордовикского известняка и способу их определения.

Уровень техники

Являясь сильным водоносным горизонтом в районах угольных месторождений Северного Китая, Ордовикские известняки неизменно представляют собой главную угрозу причинения повреждений водой при добыче угля в нижней группе. Кроме того, по мере увеличения глубины добычи давление воды увеличивается и опасные факторы становятся все более и более серьезными. По сделанным оценкам геологические запасы угля, находящиеся под угрозой высокого давления воды Ордовикского известняка (с коэффициентом прорыва воды, превышающим 0,1 МПа/м) в глубинной части угольных месторождений Северного Китая, составляют приблизительно 15 миллиардов тонн. Следовательно, в последние годы задачей исследований для угольных месторождений Северного Китая является реализация безопасной добычи угля нижней группы, находящейся под давлением, и уменьшение стоимости добычи.

До нового столетия большинство исследователей концентрировали свое внимание на исследовании оценки риска, связанного с прорывом воды Ордовикского известняка, или механизма прорыва воды во время добычи угля нижней группы, пренебрегая значением того, что верхнюю часть Ордовикского известняка, являющуюся корой выветривания палеозоя, можно использовать в качестве водоупорного пласта и слабо водоупорного (проницаемого) пласта (который можно модифицировать в водоупорный пласт путем цементации) во многих шахтах (районах добычи) благодаря его геологической формации и структуре, а также характеристикам заполнения. Поскольку с наступлением нового столетия в некоторых шахтах угольных месторождений Северного Китая коэффициент прорыва воды в Ордовикском известняке на глубине добычи достиг критического значения, большая часть угля нижней группы на большой глубине залегания не может быть разработана. На настоящем этапе важнейшей задачей является реализация безопасной добычи угля в нижней группе. Масштабные полевые испытания по нагнетанию (расходу) воды показали, что как только при бурении достигается Ордовикский известняк, прорыв воды оказывается очень небольшим или отсутствует, указывая на то, что верхняя часть Ордовикского известняка является слабопроницаемой средой, которую можно использовать непосредственно в качестве водоупорного пласта. Полевые испытания нагнетанием/расходом воды также указывают на то, что прорыв воды является умеренным, или содержание воды незначительно отличается от нижележащего сильного водоносного горизонта Ордовикского известняка, когда некоторые скважины пробурены к верхней части Ордовикских известняков. Это указывает на то, что зоны заполнения существенно отличаются друг от друга по проницаемости и в большинстве случаев не могут использоваться в качестве водоупорного пласта. С точки зрения контроля инфильтрации на основе структуры массива горных пород считается, что ключевым фактором для контроля зоны заполнения для демонстрации различной проницаемости является структура зоны.

Различие по типу верхних зон заполнения Ордовикского известняка и использование свойства водостойкости были постепенно признаны и доказаны на практике добычи на нескольких шахтах. Что касается определения типов зон заполнения, в настоящее время для грубого и качественного определения типов зон заполнения в основном используют такие способы, как наблюдение и описание кернов при бурении, а также статистику трещиноватости и тому подобное. Такие способы включают в себя серьезные искусственные субъективные факторы и испытывают нехватку количественных мер определения индексов.

Раскрытие сущности изобретения

Задачей настоящего изобретения является обеспечение индексов структурного различия верхних зон заполнения Ордовикского известняка и способа их определения для решения проблем существующих способов, которые используют наблюдение и описание кернов при бурении и статистику трещиноватости для грубой и качественной классификации типов зон заполнения, и которые содержат серьезные искусственные субъективные факторы и испытывают нехватку количественных мер определения индексов.

Задача настоящего изобретения решается следующим образом: настоящее изобретение включает в себя индексы структурного различия и способ определения структур:

I. Индексы структурного различия: сначала определяют три типа структур зоны заполнения, а именно, структуру с непрерывным заполнением, структуру с прерывистым заполнением и структуру, свободную от заполнения; затем определяют индексы различия в соответствии с тремя типами структур зоны заполнения, что включает в себя: величину q прорыва воды к скважине, величину расхода Q подземной воды и коэффициент K проницаемости участка Ордовикского известняка; затем в указанном порядке определяют пороговые значения для каждого индекса в соответствии с различными водоупорными свойствами, соответствующими трем структурам;

конкретнее, индексы получают следующими способами:

1. сначала выполняют обширное взятие проб в местах выхода на поверхность пластов зон заполнения для исследования состояния заполнения трещин глиной в зоне заполнения, и различают зоны заполнения по степени заполнения трещин на: структуру с непрерывным заполнением, структуру с прерывистым заполнением и структуру, свободную от заполнения; классифицируют типы зон заполнения, соответствующие трем структурам зоны заполнения, как соответственно водоупорную зону заполнения, слабую водоупорную зону заполнения и водонасыщенную зону заполнения;

2. если глубина залегания в зоне заполнения составляет более 300 м, определяют три индекса структуры зоны заполнения в соответствии с результатом испытания нагнетанием/расходом воды, а именно: величину q прорыва воды к скважине, величину расхода Q подземной воды и коэффициент K проницаемости участка Ордовикского известняка;

2-1 получают величину q прорыва воды к скважине: комплексно определяют глубину завершения разработки в зоне заполнения в соответствии с коэффициентом выноса керна, расходом продавочной текучей среды и степенью разработки глинистой породы в скважине; глубину завершения разработки в зоне заполнения определяют как глубину завершения разработки глинистой породы, где коэффициент выноса керна составляет менее 50%; таким образом, участок для испытания нагнетанием воды определяют как участок, начинающийся от начальной точки Ордовикского известняка до этой глубины, а величину q этого участка рассчитывают по формуле (1)

,

где Q - расход скважины, м3/с; М - толщина участка нагнетания воды, м; sw - понижение уровня воды в скважине, м; R - радиус влияния скважины, м; rw - радиус скважины для нагнетания воды, м;

2-2 получают величину расхода Q подземной воды: выполняют испытание по определению расхода воды для подземной скважины и регистрируют величину расхода воды на участке каждые 2 минуты; для испытаний по определению расхода подземной воды, которые ранее не выполнялись с такой высокой интенсивностью регистрации, производят анализ зарегистрированных величин расхода воды путем аппроксимации, в качестве примера, объясняющего аппроксимирующую формулу определения расхода воды для одной скважины, получают величины расходуемой на различных глубинах воды, начиная от начальной точки Ордовикского известняка, по аппроксимирующей формуле (2);

где, x - глубина в Ордовикском известняке, м; Q - величина прорыва воды на различной глубине в Ордовикском известняке, м3/с;

2-3 получают коэффициент K проницаемости: для подземной скважины проводят испытание на расход воды, и при закрытом клапане на участке во время расхода воды регистрируют статическое давление P1 воды и мгновенное давление P2 воды, соответственно, для представления давления воды на участке при испытании на расход воды; рассчитывают фактическую величину S понижения уровня воды в процессе расхода воды и рассчитывают коэффициент K проницаемости на участке по формулам (3) и (4)

,

где K - коэффициент проницаемости, см/с; значения других параметров являются такими же, как в формуле (1);

3. определяют пороговое значение для величины q прорыва воды к скважине, величины расхода Q подземной воды и коэффициента K проницаемости посредством следующих этапов:

3-1 определяют пороговое значение величины q прорыва воды к скважине: поскольку структура с непрерывным заполнением является водоупорной и при испытании нагнетанием воды участок нагнетания воды проявляет водоупорные свойства при q<0,001 л/с⋅м, участок со значением q<0,001 л/с⋅м определяют как водоупорную зону заполнения; поскольку структура с прерывистым заполнением имеет слабую водопроницаемость и при испытании нагнетанием воды участок нагнетания воды проявляет свойство слабой водопроницаемости при 0,001<q<0,01 л/сек⋅м, участок со значением 0,001<q<0,01 л/с⋅м определяют как зону заполнения со слабой водопроницаемостью; поскольку структура, свободная от заполнения, является водонасыщенной и при испытании нагнетанием воды участок нагнетания воды проявляет свойство водонасыщения при q>0,01 л/с⋅м, участок со значением q>0,01 л/с⋅м определяют как водонасыщенную зону заполнения;

3-2 определяют пороговое значение для величины расхода Q подземной воды: относительное содержание воды в структуре зоны заполнения является таким же, как и на этапе 3-1; пороговое значение для Q получают как произведение порогового значения для величины q, определенной на этапе 1, на среднее понижение уровня воды на глубине залегания более 300 м; на основе положения залегания пластов угля нижней группы при глубине залегания более 300 м, определяют четыре уровня давления воды Ордовикского известняка, то есть, 3 МПа, 4 МПа, 5 МПа и 6 МПа соответственно; дополнительно, понижение уровня воды при испытании нагнетанием/расходом воды предполагают в качестве максимального уровня понижения, то есть, 300 м, 400 м, 500 м и 600 м, соответственно; таким образом, определяют пороговое значение для величины прорыва воды к скважине;

3-3 определяют порог для коэффициента K проницаемости: относительное содержание воды в структуре зон заполнения является таким же, как и на этапе 3-1; поскольку испытуемый участок проявляет водоупорное свойство при испытании нагнетанием, когда коэффициент K проницаемости составляет K<10-5 см/с, участок со значением K<10-5 см/с определяют как водоупорную зону заполнения; поскольку испытуемый участок проявляет свойство слабой водопроницаемости при испытании нагнетанием, когда коэффициент K проницаемости составляет 10-5<K<10-4cм/c, участок со значением 10-5<K<10-4 см/с определяют как зону заполнения со слабой водопроницаемостью; поскольку испытуемый участок проявляет свойство водонасыщения при испытании нагнетанием, когда коэффициент K проницаемости составляет K>10-4 см/с, участок со значением K>10-4 см/с определяют, как водонасыщенную зону заполнения;

II. Способ определения структуры включает в себя следующие этапы, на которых:

1. определяют типы зон заполнения и толщины каждой из зон заполнения в полном соответствии с упомянутыми выше оценочными индексами и пороговыми значениями, причем водоупорную зону заполнения можно непосредственно использовать в качестве водоупорного пласта; зону заполнения со слабой водопроницаемостью можно модифицировать путем цементации и затем использовать; водонасыщенная зона заполнения не может использоваться в качестве водоупорного пласта, поскольку она имеет такую же водопроницаемость, как нижележащий Ордовикский известняк;

2. наносят на карту изолинии толщины водоупорной зоны заполнения, изолинии коэффициента прорыва воды без учета водоупорной зоны заполнения, и изолинии коэффициента прорыва воды с учетом водоупорной зоны заполнения, соответственно; сравнивают и анализируют две карты с изолиниями, и определяют безопасную зону добычи угля в нижней группе.

Положительные эффекты: с помощью вышеупомянутой схемы предложены индексы структурного различия для зон заполнения и решена проблема, связанная с трудностью различия зон заполнения при глубоком залегании на глубине более 300 м в угольных месторождениях Северного Китая. Дополнительно предложены структурные пороговые значения для индексов, то есть, обеспечен количественный критерий для структур зоны заполнения, и обеспечено решение проблемы, состоящей в том, что существующий эмпирический способ определения зон заполнения содержит значительный субъективизм. Водоупорную зону заполнения, определенную в настоящем изобретении, можно непосредственно использовать в качестве водоупорного пласта; зону заполнения со слабой водопроницаемостью можно модифицировать путем цементации и затем использовать; водонасыщенная зона заполнения не может использоваться в качестве водоупорного пласта, поскольку она имеет такую же водопроницаемость, как нижележащий Ордовикский известняк; таким образом, предложена основа технической поддержки для использования зон заполнения для реализации безопасной добычи угля нижней группы ниже глубины залегания более 300 м в угольных месторождениях Северного Китая.

Эффекты: Индексы структурного различия, описанные в изобретении, получены на основе стандартных гидрологических испытаний. Способ получения является относительно простым, легким для выполнения полевыми сотрудниками, а также удобным для применения и использования в полевых условиях. Индексы структурного различия и пороговые значения, предложенные в настоящем изобретении, применимы для зон заполнения угольных месторождений Северного Китая и обладают высокой степенью и широкими перспективами применения.

Краткое описание чертежей

На фиг. 1 представлено схематическое изображение структуры и относительного содержания воды верхних зон заполнения Ордовикского известняка согласно настоящему изобретению;

На фиг. 2 показан способ определения индексов структур зоны заполнения согласно настоящему изобретению;

На фиг. 3 представлена карта с изолиниями толщины верхних зон заполнения Ордовикского известняка на угольной шахте Baodian согласно варианту осуществления настоящего изобретения;

На фиг. 4 приведена карта распределения коэффициентов прорыва воды Ордовикского известняка в пласте 17 на угольной шахте Baodian согласно варианту осуществления настоящего изобретения;

На фиг. 5 приведена карта распределения коэффициентов прорыва воды Ордовикского известняка с зонами заполнения, принятыми к рассмотрению в пласте 17 на угольной шахте Baodian, согласно варианту осуществления настоящего изобретения.

Осуществление изобретения

Настоящее изобретение включает в себя индексы структурного различия и способ определения структуры;

I. Индексы структурного различия: сначала определяют три типа структур зоны заполнения, а именно, структуру с непрерывным заполнением, структуру с прерывистым заполнением, и структуру, свободную от заполнения; затем определяют индексы различия в соответствии с тремя типами структур зоны заполнения, что включает в себя: величину q прорыва воды к скважине, величину расхода Q подземной воды и коэффициент K проницаемости участка Ордовикского известняка; затем в указанном порядке определяют пороговые значения для каждого индекса в соответствии с различными водоупорными свойствами, соответствующими трем структурам;

конкретнее, индексы получают следующими способами:

1. сначала выполняют обширное взятие проб в местах выхода пластов зон заполнения на поверхность для исследования состояния заполнения глиной трещин в зоне заполнения, и различают зоны заполнения по степени заполнения трещин на: структуру с непрерывным заполнением, структуру с прерывистым заполнением, и структуру, свободную от заполнения; классифицируют типы зон заполнения, соответствующие трем структурам зоны заполнения, как соответственно водоупорную зону заполнения, слабую водоупорную зону заполнения и водонасыщенную зону заполнения;

2. для зоны заполнения на глубине залегания более 300 м определяют три индекса структуры зоны заполнения в соответствии с результатом испытания нагнетанием/расходом воды, а именно: величину q прорыва воды к скважине, величину расхода Q подземной воды, и коэффициент K проницаемости участка Ордовикского известняка;

2-1 получают величину q прорыва воды к скважине: комплексно определяют глубину завершения разработки в зоне заполнения в соответствии с коэффициентом выноса керна, расходом продавочной текучей среды и степенью разработки глинистой породы в скважине; глубину завершения разработки в зоне заполнения определяют как глубину завершения разработки глинистой породы, где коэффициент выноса керна составляет менее 50%; таким образом, участок для испытания нагнетанием воды определяют как участок, начинающийся от начальной точки Ордовикского известняка до этой глубины, а величину q этого участка рассчитывают по формуле (1):

где Q - расход скважины, м3/с; М - толщина участка нагнетания воды, м; sw - понижение уровня воды в скважине, м; R - радиус влияния скважины, м; rw - радиус скважины для нагнетания воды, м;

2-2 получают величину расхода Q подземной воды: выполняют испытание по определению расхода воды для подземной скважины и регистрируют величину расхода воды на участке каждые 2 минуты; для испытаний по определению расхода подземной воды, которые ранее не выполнялись с такой высокой интенсивностью регистрации, производят анализ зарегистрированных величин расхода воды путем аппроксимации, в качестве примера, объясняющего аппроксимирующую формулу определения расхода воды для одной скважины, получают величины расходуемой на различных глубинах воды, начиная от начальной точки Ордовикского известняка, по аппроксимирующей формуле (2):

где, x - глубина в Ордовикском известняке, м; Q - величина прорыва воды на различной глубине в Ордовикском известняке, м3/с;

2-3 получают коэффициент K проницаемости: для подземной скважины проводят испытание на расход воды и при закрытом клапане на участке во время расхода воды регистрируют статическое давление P1 воды и мгновенное давление P2 воды, соответственно, для представления давления воды на участке при испытании на расход воды; рассчитывают фактическую величину S понижения уровня воды в процессе расхода воды, и рассчитывают коэффициент K проницаемости на участке по формулам (3) и (4):

где, K - коэффициент проницаемости, см/с; значения других параметров являются такими же, как в формуле (1);

3. определяют пороговые значения для величины q прорыва воды к скважине, величины расхода Q подземной воды и коэффициента K проницаемости посредством следующих этапов:

3-1 определяют пороговое значение величины q прорыва воды к скважине: поскольку структура с непрерывным заполнением является водоупорной и при испытании нагнетания воды участок нагнетания воды проявляет водоупорные свойства при q<0,001 л/с⋅м, участок со значением q<0,001 л/с⋅м определяют как водоупорную зону заполнения; поскольку структура с прерывистым заполнением имеет слабую водопроницаемость и при испытании нагнетанием воды участок нагнетания воды проявляет свойство слабой водопроницаемости при 0,001<q<0,01 л/с⋅м, участок со значением 0,001<q<0,01 л/с⋅м определяют как зону заполнения со слабой водопроницаемостью; поскольку структура, свободная от заполнения, является водонасыщенной и при испытании нагнетанием воды участок нагнетания воды проявляет свойство водонасыщения при q>0,01 л/с⋅м, участок со значением q>0,01 л/с⋅м определяют как водонасыщенную зону заполнения;

3-2 определяют пороговое значение для величины расхода Q подземной воды: относительное содержание воды в структуре зоны заполнения является таким же, как и на этапе 3-1; пороговое значение для Q получают как произведение порогового значения для величины q, определенной на этапе 1, и среднего понижения уровня воды на глубине залегания более 300 м; на основе положения залегания пластов угля нижней группы при глубине залегания более 300 м определяют четыре уровня давления воды Ордовикского известняка, то есть, 3 МПа, 4 МПа, 5 МПа и 6 МПа соответственно; дополнительно, понижение уровня воды при испытании нагнетанием/расходом воды предполагается в качестве максимального уровня понижения, то есть, 300 м, 400 м, 500 м и 600 м, соответственно; таким образом, определяют пороговое значение для величины прорыва воды к скважине;

3-3 определяют порог для коэффициента K проницаемости: относительное содержание воды в структуре зон заполнения является таким же, как и на этапе 3-1; поскольку испытуемый участок проявляет водоупорное свойство при испытании нагнетанием, когда коэффициент K проницаемости составляет K<10-5 см/с, участок со значением K<10-5 см/с определяют как водоупорную зону заполнения; поскольку испытуемый участок проявляет свойство слабой водопроницаемости при испытании нагнетанием, когда коэффициент K проницаемости составляет 10-5<K<10-4 см/с, участок со значением 10-5<K<10-4 см/с определяют как зону заполнения со слабой водопроницаемостью; поскольку испытуемый участок проявляет свойство водонасыщения при испытании нагнетанием, когда коэффициент K проницаемости составляет K>10-4 см/с, участок со значением K>10-4 см/с определяют, как водонасыщенную зону заполнения;

II. Способ определения структуры включает в себя следующие этапы:

1. определяют типы зон заполнения и толщины каждой из зон заполнения в полном соответствии с упомянутыми выше оценочными индексами и пороговыми значениями, причем водоупорную зону заполнения можно непосредственно использовать в качестве водоупорного пласта; зону заполнения со слабой водопроницаемостью можно модифицировать путем цементации и затем использовать; водонасыщенная зона заполнения не может использоваться в качестве водоупорного пласта, поскольку она имеет такую же водопроницаемость, как нижележащий Ордовикский известняк;

2. наносят на карту изолинии толщины водоупорной зоны заполнения, изолинии коэффициента прорыва воды без учета водоупорной зоны заполнения и изолинии коэффициента прорыва воды с учетом водоупорной зоны заполнения, соответственно; сравнивают и анализируют две карты с изолиниями, и определяют безопасную зону добычи угля в нижней группе.

Далее настоящее изобретение будет дополнительно описано с помощью диаграмм и таблиц варианта осуществления изобретения.

Вариант осуществления 1: Индексы структурного различия, а именно, величина q прорыва воды к скважине, величина расхода Q подземной воды и коэффициент K проницаемости получены посредством следующих этапов:

1. получение величины q прорыва воды к скважине: глубина завершения разработки в зоне заполнения определена комплексно в соответствии с коэффициентом выноса керна, расходом продавочной текучей среды и степенью разработки глинистой породы в скважине; глубина завершения разработки в зоне заполнения определена как глубина завершения разработки глинистой породы, где коэффициент выноса керна составляет менее 50%; таким образом, участок для испытания нагнетанием воды определен как участок, начинающийся от начальной точки Ордовикского известняка до этой глубины, а величина q этого участка рассчитана по формуле (1);

2. получение величины расхода Q подземной воды: испытание по определению расхода воды выполнено для подземной скважины и величина расхода воды на участке регистрировалась каждые 2 минуты; для испытаний по определению расхода подземной воды, не выполнявшихся ранее с такой высокой интенсивностью регистрации, в качестве примера, объясняющего аппроксимирующую формулу для определения расхода воды для одной скважины, выполнен анализ зарегистрированных величин расхода воды путем аппроксимации; величины расходуемой на различных глубинах воды, начиная от начальной точки Ордовикского известняка, получены по аппроксимирующей формуле (2);

3. получение коэффициента K проницаемости: для подземной скважины проведено испытание на расход воды, и при закрытом клапане на участке во время расхода воды зарегистрировано статическое давление P1 воды и мгновенное давление P2 воды, соответственно, для представления давления воды на участке при испытании на расход воды; рассчитана фактическая величина S понижения уровня воды в процессе расхода воды и рассчитан коэффициент K проницаемости на участке по формулам (3) и (4);

пороговые значения для индексов (q, Q и K) определены посредством следующих этапов:

4. участок с величиной q прорыва воды к скважине <0,001 л/с⋅м определен как водоупорная зона заполнения; участок со значением 0,001<q<0,01 л/с⋅м определен как зона заполнения со слабой водопроницаемостью; участок со значением q>0,01 л/с⋅м определен как водонасыщенная зона заполнения; на основе коэффициента K проницаемости зона заполнения с K<10-5 см/с определена как водоупорная зона заполнения; зона заполнения с 10-5<K<10-4 см/с определена как зона заполнения со слабой водопроницаемостью; зона заполнения с K>10-4 см/с определена как водонасыщенная зона заполнения; на основе положения залегания пластов угля нижней группы в восточных районах добычи, определены четыре уровня давления воды Ордовикского известняка, то есть, 3 МПа, 4 МПа, 5 МПа и 6 МПа соответственно; дополнительно, понижение уровня воды при испытании нагнетанием/расходом воды предположено как максимальный уровень понижения, то есть, 300 м, 400 м, 500 м и 600 м, соответственно; таким образом, определено пороговое значение для величины прорыва воды к скважине;

См. Таблицы 1 и 2.

6. На основе вышеупомянутых оценочных индексов и их пороговых значений комплексно определены типы зон заполнения и толщины каждой из зон заполнения (показано в Таблицах 3, 4 и 5). Из соображений безопасности, минимальные значения толщины, определенные комплексно тремя индексами, приняты как толщины зон заполнения.

7. На карту нанесены изолинии толщины водоупорной зоны заполнения на угольной шахте Baodian (фиг. 3). Дополнительно, на карту нанесены изолинии коэффициента прорыва воды без учета водоупорной зоны заполнения (фиг. 4), и на карту нанесены изолинии коэффициента прорыва воды с учетом водоупорной зоны заполнения, (фиг. 5); выполнено сравнение двух карт с изолиниями и анализ изменения коэффициента прорыва воды (Таблица 6) и определена безопасная зона добычи угля в нижней группе на угольной шахте Baodian.

Как видно из Таблицы 6 и фиг. 4 и 5, при учете зоны заполнения зона безопасности в пласте 17 увеличена на 8,09 км2, то есть, увеличена на 13,55%, и зона безопасности в основном распространяется на первую площадь исследований; относительно безопасная зона увеличена на приблизительно 13,66 км2, то есть, увеличена на приблизительно 22,88%; опасная зона уменьшена на 21,81 км2, то есть, уменьшена на 36,43%. Отсюда очевидно, что учет зоны заполнения является предпочтительным для добычи в пласте 17, приводя к значительному увеличению безопасной зоны и относительной безопасности зоны, а также к сильному уменьшению опасной зоны.

1. Способ определения индексов структурного различия верхних зон заполнения Ордовикского известняка, согласно которому:

сначала определяют три типа структур зоны заполнения, а именно структуру с непрерывным заполнением, структуру с прерывистым заполнением и структуру, свободную от заполнения;

затем определяют индексы различия в соответствии с тремя типами структур зоны заполнения, включающие: величину q прорыва воды к скважине, величину расхода Q подземной воды и коэффициент K проницаемости участка Ордовикского известняка;

затем соответственно определяют пороговые значения для каждого индекса в соответствии с различными водоупорными свойствами, соответствующими указанным трем структурам;

причем индексы получают посредством следующих этапов:

a) сначала выполняют взятие проб в местах выхода на поверхность пластов зон заполнения для исследования состояния заполнения трещин глиной в зоне заполнения и различают зоны заполнения по степени заполнения трещин на: структуру с непрерывным заполнением, структуру с прерывистым заполнением и структуру, свободную от заполнения; классифицируют типы зон заполнения, соответствующие трем структурам зоны заполнения, как соответственно водоупорную зону заполнения, слабую водоупорную зону заполнения и водонасыщенную зону заполнения;

b) для зоны заполнения на глубине залегания более 300 м определяют три индекса структур зоны заполнения в соответствии с результатом испытаний нагнетанием/расходом воды, а именно: величину q прорыва воды к скважине, величину расхода Q подземной воды и коэффициент K проницаемости участка Ордовикского известняка посредством следующих этапов:

b1) получают величину q прорыва воды к скважине: комплексно определяют глубину завершения разработки в зоне заполнения в соответствии с коэффициентом выноса керна, расходом продавочной текучей среды и степенью разработки глинистой породы в скважине;

глубину завершения разработки в зоне заполнения определяют как глубину завершения разработки глинистой породы, где коэффициент выноса керна составляет менее 50%; таким образом, участок для испытания нагнетанием воды определяют как участок, начинающийся от начальной точки Ордовикского известняка до этой глубины, а величину q этого участка рассчитывают по формуле (1)

,

где Q - расход скважины, м3/с; М - толщина участка нагнетания воды, м; R - радиус влияния скважины, м; rw - радиус скважины для нагнетания воды, м;

b2) получают величину расхода Q подземной воды: выполняют испытание по определению расхода воды для подземной скважины и регистрируют величину расхода воды на участке каждые 2 минуты; производят анализ зарегистрированных величин расхода воды путем аппроксимации, в качестве примера, объясняющего аппроксимирующую формулу определения расхода воды для одной скважины, получают величины расходуемой на различных глубинах воды, начиная от начальной точки Ордовикского известняка, по аппроксимирующей формуле (2)

,

где х - глубина в Ордовикском известняке, м; Q - величина прорыва воды на различной глубине в Ордовикском известняке, м3/с;

b3) получают коэффициент K проницаемости: для подземной скважины проводят испытание на расход воды и при закрытом клапане на участке во время расхода воды регистрируют статическое давление P1 воды и мгновенное давление Р2 воды соответственно; рассчитывают фактическую величину S понижения уровня воды в процессе расхода воды и рассчитывают коэффициент K проницаемости на участке по формулам (3) и (4)

,

где K - коэффициент проницаемости, см/с; sw - понижение уровня воды в скважине, м; значения других параметров являются такими же, как в формуле (1);

с) определяют пороговые значения для величины q прорыва воды к скважине, величины расхода Q подземной воды и коэффициента К проницаемости посредством следующих этапов:

c1) определяют пороговое значение величины q прорыва воды к скважине: поскольку структура с непрерывным заполнением является водоупорной и при испытании нагнетанием воды участок нагнетания воды проявляет водоупорные свойства при q<0,001 л/с⋅м, участок со значением q<0,001 л/с⋅м определяют как водоупорную зону заполнения; поскольку структура с прерывистым заполнением имеет слабую водопроницаемость и при испытании нагнетанием воды участок нагнетания воды проявляет свойство слабой водопроницаемости при 0,001<q<0,01 л/с⋅м, участок со значением 0,001<q<0,01 л/с⋅м определяют как зону заполнения со слабой водопроницаемостью; поскольку структура, свободная от заполнения, является водонасыщенной и при испытании нагнетанием воды участок нагнетания воды проявляет свойство водонасыщения при q>0,01 л/с⋅м, участок со значением q>0,01 л/с⋅м определяют как водонасыщенную зону заполнения;

с2) определяют пороговое значение для величины расхода Q подземной воды: содержание воды в структуре зоны заполнения является таким же, как и на этапе c1); пороговое значение для Q получают как произведение порогового значения для величины q, определенной на этапе c1), и среднего понижения уровня воды на глубине залегания более 300 м; на основе положения залегания пластов угля нижней группы при глубине залегания более 300 м задают четыре уровня давления воды Ордовикского известняка, то есть 3 МПа, 4 МПа, 5 МПа и 6 МПа соответственно; дополнительно, понижение уровня воды при испытании нагнетанием/расходом воды предполагают в качестве максимального уровня понижения, то есть 300 м, 400 м, 500 м и 600 м соответственно; таким образом, определяют пороговое значение для величины прорыва воды к скважине;

с3) определяют пороговое значение для коэффициента K проницаемости: содержание воды в структуре зон заполнения является таким же, как и на этапе c1); поскольку испытуемый участок проявляет водоупорное свойство при испытании нагнетанием, когда коэффициент K проницаемости составляет K<10-5 см/с, участок со значением K<10-5 см/с определяют как водоупорную зону заполнения; поскольку испытуемый участок проявляет свойство слабой водопроницаемости при испытании нагнетанием, когда коэффициент K проницаемости составляет 10-5<K<10-4 см/с, участок со значением 10-5<K<10-4 см/с определяют как зону заполнения со слабой водопроницаемостью; поскольку испытуемый участок проявляет свойство водонасыщения при испытании нагнетанием, когда коэффициент K проницаемости составляет K>10-4 см/с, участок со значением K>10-4 см/с определяют как водонасыщенную зону заполнения.

2. Способ по п. 1, включающий дополнительно следующие этапы:

определяют типы зон заполнения и толщины каждой из зон заполнения в полном соответствии с оценочными индексами и пороговыми значениями, определенными в соответствии со способом по п. 1, причем водоупорную зону заполнения можно непосредственно использовать в качестве водоупорного пласта; зону заполнения со слабой водопроницаемостью можно модифицировать путем цементации и затем использовать; водонасыщенная зона заполнения не может использоваться в качестве водоупорного пласта, поскольку она имеет такую же водопроницаемость, как нижележащий Ордовикский известняк; наносят на карту изолинии толщины водоупорной зоны заполнения, изолинии коэффициента прорыва воды без учета водоупорной зоны заполнения и изолинии коэффициента прорыва воды с учетом водоупорной зоны заполнения соответственно; сравнивают и анализируют две карты с изолиниями и определяют безопасную зону добычи угля в нижней группе.



 

Похожие патенты:

Изобретение относится к области инженерно-геологических изысканий и может быть использовано для определения фильтрационных свойств пород, что очень важно при проектировании и эксплуатации оросительных каналов.
Изобретение относится к области спектроскопических измерений и касается способа определения тяжелых металлов в почве. При осуществлении способа исследуемый образец почвы наносят слоем толщиной 5-10 микрон на атомно-гладкую поверхность кристалла меди, отжигают при температуре 150°С в течение 5 минут и помещают в вакуумную камеру с давлением остаточных газов на уровне 10-8 миллибар.

Изобретение относится к области изучения свойств смачивания. Для определения равновесной смачиваемости поверхности раздела пустотного пространства и твердой фазы образца горной породы получают трехмерное изображение внутренней структуры образца.

Изобретение относится к области изучения свойств смачивания. Для определения равновесной смачиваемости поверхности раздела пустотного пространства и твердой фазы образца горной породы получают трехмерное изображение внутренней структуры образца.

Изобретение относится к экологии и может быть использовано для мониторинга состояния нарушенных земель в районах освоения газовых месторождений Крайнего Севера. Для этого, после проведения рекультивации нарушенных земель, проводят комплексное исследование проб почвы рекультивированного и незагрязненного фонового участков.

Изобретение относится к газогеохимическим исследованиям грунтов и может быть использовано для решения геологических, геофизических, океанологических, акустических задач и инженерного проектирования.

Изобретение относится к геологии и может быть использовано при определении генезиса морских осадочных отложений, а именно мелкозернистых песчаников, алевролитов, алевроаргиллитов и аргиллитов.

Изобретение относится к геологии и может быть использовано при определении генезиса морских осадочных отложений, а именно мелкозернистых песчаников, алевролитов, алевроаргиллитов и аргиллитов.

Изобретение относится к области «Физики материального контактного взаимодействия» и касается способа определения на заданной глубине h>С/γ (м), где С (МПа) - удельное сцепление, γ (МН/м3) - удельный вес массива среды по зависимостям (МН/м3) и (МН/м3)соответственно в структурированном и нарушенном состоянии, где 1 ил..

Изобретение относится к способам изготовления стандартных образцов почвы для оперативного и статистического контроля погрешности результатов измерений. Способ изготовления стандартных образцов массовой доли тяжелых металлов в почве включает отбор почвы в естественных условиях, сушку, измельчение, просеивание и усреднение почвенного материала, приготовление водного раствора солей тяжелых металлов заданной концентрации, смешивание почвы с раствором солей тяжелых металлов, испарение воды при 105°С и аттестацию полученного материала по массовой доле тяжелых металлов, что позволит осуществлять контроль методик выполнения измерений при определении содержания тяжелых металлов в почвах.

Изобретение направлено на повышение эффективности и оптимизацию геологоразведочных работ, особенно в условиях шельфа арктических и северных морей путем достижения технического результата, который заключается в снижении временных и финансовых затрат за счет определения гидродинамических параметров продуктивных нефтяных или газовых пластов с помощью приборов ГДК-ОПК, а также по данным ГИС.

Изобретение относится к системам, устройствам и способам осуществления измерений свойств формации. Техническим результатом является повышение эффективности определения параметров формации.

Изобретение относится к области разработки нефтяных месторождений с применением закачки в пласт перегретого водяного пара, более подробно - к лабораторным методам совместного исследования керна и собственно нефти, нахождению зависимостей соотношения изомеров метилдибензотиофена, содержащихся в керне и нефти, построению двухмерных и трёхмерных геохимических моделей, может быть использовано при разработке залежей преимущественно сверхвязкой нефти и битума.

Импульсно-Кодовое Гидропрослушивание (ИКГ) представляет собой комплексное решение задачи межскважинного гидропослушивания и претендует на существенное расширение применимости традиционного гидропрослушивания на практике.

Изобретение относится к нефтегазовой отрасли и позволяет осуществить увязку по глубине скважины данных фильтрационно-емкостных свойств (ФЕС) породы. Техническим результатом изобретения является обеспечение оперативной оценки свойств пласта за счет автоматизации процесса увязки по керну и геофизических исследований скважин (ГИС).

Раскрыты устройство хранения программы, способ и система для анализа и планирования специализированной операции импульсного разрыва, предназначенной для разрыва коллекторного пласта в стволе скважины.

Изобретение относится к нефтегазодобывающей промышленности, в частности к способам проектирования разработки месторождений с системой поддержания пластового давления, и может быть использовано для обоснования и прогнозирования изменения компонентного состава и свойств пластового флюида в процессе эксплуатации залежи.

Изобретение относится к области добычи природного газа, а именно к способу контроля за разработкой многопластовых месторождений газа, при расчете пластового давления, как по отдельным пластам, так и по месторождению в целом.

Изобретение относится к области геолого-гидродинамического моделирования и может быть использовано при решении задач поиска, разведки и проектирования разработки нефтяных месторождений в условиях сложного строения коллекторов.

Изобретение относится к нефтегазовой геологии, включая поисковую геохимию на нефть, газ и рудные, и может быть использовано при проведении геологоразведочных работ на нефть и газ для выявления в разрезах интервалов осадочных пород пластовых вод и нефти, обогащенных попутными ценными промышленно значимыми металлами, и их площадного распространения.
Наверх