Способ оценки надежности изоляционного покрытия на обмотках тяговых электродвигателей транспортных средств и устройство для его реализации

Изобретение относится к машиностроению и может быть использовано при проведении механических испытаний изоляции обмоток электродвигателей локомотивов. Сущность: осуществляют приложение силового воздействия к исследуемому образцу изоляционного покрытия. Прикладывают воздействие вибрационного характера к исследуемому образцу, регулируют мощность воздействия при помощи генератора частот, контроль за ходом испытания осуществляют при помощи перемещаемой видеокамеры. По окончании этапа испытаний сравнивают полученные результаты с эталонным первоначальным образцом и делают заключение о состоянии изоляционного покрытия. Устройство содержит высокочастотный акустический динамик с присоединенными к нему генератором частот и усилителем звука для регулирования вибрационного воздействия, передаваемого на исследуемый образец при помощи динамика, устройства крепления, установленные на верхней части динамика для фиксации образца, а также на основании для крепления динамика, видеокамеру, перемещаемую при помощи манипулятора по нескольким степеням свободы. Технический результат: возможность оценить остаточный ресурс изоляционного покрытия, показать опасные места на изоляционном покрытии. 2 н.п. ф-лы, 2 ил.

 

Изобретение относится к машиностроению и может быть использовано при проведении механических испытаний изоляции обмоток электродвигателей локомотивов.

В процессе эксплуатации электровозов различного назначения тяговые двигатели испытывают влияние ряда факторов, что негативно сказывается на их работе. К таким факторам можно отнести электрические и механические воздействия.

Воздействие электрических факторов проверяется на различных испытательных установках и при исследовании основное внимание уделяется электрическому сопротивлению обмоток электродвигателя. Механические испытания в большинстве своем представляют собой длительное вибрационное воздействие на электродвигатель в целом для проверки прочности крепления обмоток.

Однако влияние вибраций самого двигателя на изоляционное покрытие не рассматривается, хотя при длительной работе возможно уменьшение адгезионной прочности покрытия, появление трещин, вспучиваний и других дефектов.

Предлагается способ и устройство для оценки надежности изоляционного покрытия, основанный на испытаниях адгезионной прочности лакокрасочной пленки к подложке при помощи вибрационных воздействий, генерируемых высокочастотных звуковым динамиком.

В процессе патентного поиска выявлен ряд часть изобретений-аналогов.

Известен способ [Хомутов О.И., Хомутов C.O., Грибанов А.А., Левачев А.В., Сташко В.И., Суханкин Г.В. «Способ контроля состояния изоляции обмоток электродвигателя», патент RU 2208236 С2, МПК G01R 31/12, G01R 31/14, опубл. 10.07.2003], который относится к электротехнике, в частности к способам диагностики изоляции обмоток электродвигателей. Технический результат изобретения, заключающийся в повышении достоверности и точности оценки диагностических параметров, достигается путем того, что в способе контроля состояния изоляции обмоток электродвигателя, при котором подают сигнал прямоугольной формы на обмотку и по диагностическим параметрам судят о состоянии изоляции обмоток электродвигателя, в качестве диагностических параметров используют амплитуды первого и второго полупериодов и величины первого и второго периодов затухающего колебательного процесса, при сравнении значений которых с эталонными диагностическими параметрами делают заключение о состоянии изоляции обмоток.

Основным недостатком данного изобретения является отсутствие проверки адгезионной прочности изоляционного покрытия.

К известным техническим решениям также относится способ [Колчаев A.M. «Способ определения тангенциальной прочности адгезионной связи антифрикционных покрытий», патент RU 2134873 С1, МПК G01N 19/04, опубл. 20.08.1999], предназначенный для использования при исследовании антифрикционных покрытий, нанесенных на чугунные поверхности, работающие в условиях граничной смазки. Деформируют покрытие в виде пленок, нанесенных на поверхность образцов, путем перемещения шарового индентора с последующим его вращением. Материалы образцов имеют твердость, отличную от твердости материалов пленок. Индентор вращают относительно оси симметрии, перпендикулярной плоскости образцов. Измеряют силу вращения индентора и диаметр отпечатка на образце. Перемещение шарового индентора производят до пересечения границы раздела ʺпокрытие-подложкаʺ, что обеспечивает срезание шероховатостями индентора, при его вращении, соединений на границе ʺпокрытие-подложкаʺ, повышается качество определения тангенциальной адгезионной прочности покрытий, нанесенных фрикционно-механическим способом на поверхность одной из деталей пары трения, работающих в условиях граничной смазки.

К недостаткам данного изобретения можно отнести отсутствие внимания к стойкости покрытия к вибрационным возмущениям.

Известен способ [Семашко Н.А., Мокрицкая Е.Б., Филоненко С.Ф., Мокрицкий Б.Я., Вахрушев О.М., «Способ контроля физико-механических свойств изделий», патент RU 2138038, С1, МПК, G01N 29/14, G01N 19/04, G01N 3/00, опубл. 20.09.1999], включающий в себя нагружение изделий, включающий в себя нагружение изделий индектором, регистрацию сигналов акустической эмиссии одновременно с нагружением, контроль физико-механических свойств по параметрам сигналов, отличающийся тем, что в качестве параметра принимают энергию импульсов сигналов, а контроль производят по критерию, определяемому по зависимости Кр=(Ес2), где Ес - энергия импульса, b2 с; τ - длительность импульсов, с.

Недостатками данного изобретения являются отсутствие визуального контроля за обследуемым покрытием и проверки адгезионной прочности покрытия на стойкость вибрационным возмущениям.

За прототип взят стенд для динамических испытаний [Лодус Е.В., Рогалев В.А., Горшков Л.К., Таланов Д.Ю., «Стенд для динамических испытаний образцов материалов», патент RU 2506561, С2, МПК, G01N 3/34, опубл. 30.11.2011], содержащий основание, установленные на нем платформу с приводом вращения, кольцевую направляющую, установленную соосно платформе, колесо, установленное на платформе с возможностью взаимодействия с направляющей, кулачок, установленный на колесе, и два захвата для образца, расположенные на платформе, отличающийся тем, что он имеет дополнительное колесо, установленное на платформе с возможностью взаимодействия с направляющей, и дополнительный кулачок, установленный на дополнительном колесе, при этом захваты расположены между кулачками с возможностью перемещения по платформе и поочередного взаимодействия с соответствующими кулачками, а кулачки установлены с возможностью синхронного вращения.

К недостаткам данного изобретения можно отнести отсутствие возможности регулирования воздействия, а также точечный характер его приложения.

Цель изобретения заключается в сообщении при помощи высокочастотного динамика звуковых колебаний исследуемому на адгезионную прочность образцу изоляционного покрытия.

Способ оценки надежности изоляционного покрытия на обмотках тяговых электродвигателей транспортных средств, включающий приложение силового воздействия к исследуемому образцу изоляционного покрытия, отличающийся тем, что прикладывают воздействие вибрационного характера к исследуемому образцу, регулируют мощность воздействия при помощи генератора частот, контроль за ходом испытания осуществляют при помощи перемещаемой видеокамеры, по окончанию этапа испытаний сравнивают полученные результаты с эталонным первоначальным образцом и делают заключение о состоянии изоляционного покрытия.

Устройство для оценки надежности изоляционного покрытия на обмотках тяговых электродвигателей, содержащее высокочастотный акустический динамик с присоединенными к нему генератором частот и усилителем звука для регулирования вибрационного воздействия, передаваемого на исследуемый образец при помощи динамика, устройства крепления, установленные на верхней части динамика для фиксации образца, а также на основании для крепления динамика, видеокамеру, перемещаемую при помощи манипулятора по нескольким степеням свободы.

Суть предлагаемого изобретения поясняется чертежами.

На фиг. 1 изображена горизонтальная проекция испытательной установки. На высокочастотном динамике 1 установлены крепления 2 для исследуемого образца 3, представляющего собой часть изоляционного покрытия. Динамик 1 присоединен к генератору частот 4, соединенному с усилителем звука 5, на котором установлен блок управления 6. Также предусмотрена видеокамера 7, закрепленная на манипуляторе 8 с возможностью движения по нескольким степеням свободы. Динамик 1 жестко закреплен на основании 10 при помощи скоб 9. На фиг 2 показана вертикальная проекция испытательной установки, где отмечены фигуры Хладни 10.

Сущность предлагаемого способа заключается в следующем.

При помощи блока управления 6 генератору частот 4 задается требуемый режим воздействия, после чего происходит включение динамика 1. При необходимости увеличения звукового воздействия используется усилитель звука 5. Также блок управления 6 позволяет соединять и накладывать («микшировать») друг на друга различные звуковые воздействия для получения требуемых возмущений различной природы. Звуковое воздействие, передаваемое на исследуемый образец 3, возбуждает его колебания, что позволяет оценить адгезионную прочность изоляционного покрытия образца, жестко зафиксированного устройствами крепления 2. При помощи видеокамеры 7 с возможностью перемещения манипулятором 8 производится контроль за ходом испытаний, который может осуществлять в онлайн-режиме с возможностью записи визуальных результатов изменения структуры покрытия. Для исключения влияния на процесс неудерживающих связей динамик 1 жестко присоединен к основанию скобами 9.

Приложенное воздействие может быть задано различными вибрационными режимами, которые могут представлять собой как моделирование рабочих частот тягового электродвигателя, так и транслирование звуковых записей его работы. Испытания при достаточно длительности воздействия приведут к появлению трещин, отрывов и других дефектов изоляционного покрытия, с возможностью формирования структуры, похожей на фигуры Хладни 10. Анализ результатов испытаний позволит оценить остаточный ресурс изоляционного покрытия, показать опасные места на изоляционном покрытии.

1. Способ оценки надежности изоляционного покрытия на обмотках тяговых электродвигателей транспортных средств, включающий приложение силового воздействия к исследуемому образцу изоляционного покрытия, отличающийся тем, что прикладывают воздействие вибрационного характера к исследуемому образцу, регулируют мощность воздействия при помощи генератора частот, контроль за ходом испытания осуществляют при помощи перемещаемой видеокамеры, по окончании этапа испытаний сравнивают полученные результаты с эталонным первоначальным образцом и делают заключение о состоянии изоляционного покрытия.

2. Устройство для оценки надежности изоляционного покрытия на обмотках тяговых электродвигателей, содержащее высокочастотный акустический динамик с присоединенными к нему генератором частот и усилителем звука для регулирования вибрационного воздействия, передаваемого на исследуемый образец при помощи динамика, устройства крепления, установленные на верхней части динамика для фиксации образца, а также на основании для крепления динамика, видеокамеру, перемещаемую при помощи манипулятора по нескольким степеням свободы.



 

Похожие патенты:

Изобретение относится к способам оценки энергоемкости титановых сплавов по их механическим свойствам и определения по полученным величинам пригодности данных сплавов для изготовления упругих элементов.

Изобретение относится к способам оценки энергоемкости титановых сплавов по их механическим свойствам и определение, по полученным величинам, пригодности данных сплавов для изготовления упругих элементов.

Изобретение относится к способу определения стойкости к истиранию по меньшей мере одного слоя износа, расположенного на несущей пластине. Сущность: осуществляют этапы: записи по меньшей мере одного БИК-спектра слоя износа, расположенного по меньшей мере на одной несущей пластине, a) перед затвердеванием по меньшей мере одного слоя износа, b) после затвердевания по меньшей мере одного слоя износа или c) перед затвердеванием по меньшей мере одного слоя износа с несущей пластиной и после него с применением по меньшей мере одного БИК-детектора в диапазоне длины волны от 500 нм до 2500 нм, предпочтительно от 700 нм до 2000 нм, особенно предпочтительно от 900 нм до 1700 нм; определения стойкости к истиранию по меньшей мере одного слоя износа путем сравнения БИК-спектра, записанного для определения стойкости к истиранию по меньшей мере одного слоя износа, по меньшей мере с одним БИК-спектром, записанным по меньшей мере для одного эталонного образца по меньшей мере одного слоя износа с известной стойкостью к истиранию, с помощью многопараметрового анализа данных (МАД), при этом по меньшей мере один БИК-спектр, записанный по меньшей мере для одного эталонного образца с известной стойкостью к истиранию по меньшей мере одного слоя износа, определили заранее a) после затвердевания по меньшей мере одного слоя износа или b) перед затвердеванием и после него с использованием того же БИК-детектора в диапазоне длины волны от 500 нм до 2500 нм, предпочтительно от 700 нм до 2000 нм, особенно предпочтительно от 900 нм до 1700 нм.

Изобретение относится к технике для проведения испытаний, а именно для исследования устойчивости к воздействию резких температурных колебаний, и может быть использовано при испытаниях на термоудар приборов космического назначения.

Изобретение относится к способам определения термомеханических характеристик полимерных композиционных материалов, а именно к способам определения теплостойкости Т.

Изобретение относится к метрологии, в частности к способам определения термостойкости углей при их циклическом замораживании и оттаивании. Сущность: осуществляют циклическое замораживание и оттаивание однотипных образцов углей при числе М циклов, равном порядковому номеру соответствующего образца в серии.

Изобретение относится к области строительства и предназначено для испытаний плоских многоэтажных рамно-стержневых конструктивных систем на живучесть, в частности экспериментального определения динамических догружений в элементах конструктивной системы при внезапном выключении из работы одного из несущих элементов.

Изобретение относится к области теплоэнергетики и может быть использовано для определения жаростойкости аустенитных сталей, используемых в теплонапряженных элементах энергетического оборудования.

Изобретение относится к области пожарной безопасности зданий. При осуществлении способа испытание стальной балки с гофростенкой проводят без разрушения по комплексу единичных показателей качества, оценивая их величину с помощью статистического контроля.

Изобретение относится к области пожарной безопасности зданий, в частности, оно может быть использовано для пожарно-технической классификации стальной термозащищенной гофробалки по показателям сопротивления воздействию пожара.

Использование: для неразрушающего контроля поврежденности металлов. Сущность изобретения заключается в том, что определяют временные задержки распространения упругой волны, при этом определение временных задержек производят для одного типа объемной упругой волны при разных температурах и определяют поврежденность материала, используя заданную математическую формулу.
Устройство относится к метрологии, в частности к средствам для дистанционного контроля высоковольтного оборудования. Устройство контроля высоковольтного оборудования под напряжением, включающее приемник сигналов от частичных разрядов, оптический визир, блок лазерной наводки, жидкокристаллический индикатор, блок автоматической регулировки чувствительности сигналов от частичных разрядов, блок обработки сигналов.

Использование: для ультразвукового (УЗ) неразрушающего контроля изделий, в частности железнодорожных рельсов. Сущность изобретения заключается в том, что в зоне досягаемости диаграммы направленности вертикального зондирующего электроакустического преобразователя (ЭАП), направленного через головку, шейку к подошве рельса, устанавливают дополнительные приемные ЭАП.
Изобретение относится к технологии изготовления стволов артиллерийских орудий. Способ поверхностной закалки внутренней поверхности ствола артиллерийского орудия заключается в том, что на контрольный участок внутренней поверхности ствола воздействуют импульсами лазерного излучателя для нагрева и перевода поверхностного слоя металла в мартенсит с последующим контролем качества закалки.

Использование: для комплексного автоматизированного неразрушающего контроля качества многослойных изделий. Сущность изобретения заключается в том, что устройство включает два ультразвуковых преобразователя теневого контроля, ультразвуковой дефектоскоп теневого контроля, пороговое устройство ультразвукового дефектоскопа теневого контроля, датчик позиционирования, электронный блок датчика позиционирования, регистрирующее устройство, преобразователь акустического дефектоскопа для осуществления метода свободных колебаний, акустический дефектоскоп для осуществления метода свободных колебаний, пороговое устройство акустического дефектоскопа для осуществления метода свободных колебаний, электронный ключ, блок задержки.

Использование: для неразрушающего контроля качества изделий. Сущность изобретения заключается в том, что сканируют поверхность контролируемого объекта датчиками физических полей, измеряют величины сигналов с каждой точки поверхности контролируемого объекта, разбивают диапазон величин сигналов по их значениям на I интервалов, регистрируют измеренные сигналы по принадлежности к соответствующим интервалам, определяют количество измеренных сигналов в каждом интервале, рассчитывают разность количества измеренных сигналов в последующем и предыдущем интервалах по всему диапазону значений величин измеренных сигналов, в качестве порогового значения величины сигнала излучения физического поля выбирают значение из интервала, для которого разность количества измеренных сигналов в данном и предыдущем интервалах меньше нуля, а разность количества измеренных сигналов в данном и последующем интервалах больше нуля.

Область применения: - неразрушающий контроль состояния сляба. Технический результат – повышение точности контроля.

Использование: для неразрушающего контроля твердых тел. Сущность изобретения заключается в том, что размещают в заданной зоне сканирования ультразвуковой преобразователь и проводят операции контроля, включающие зондирование импульсами ультразвуковой частоты, регистрацию принятых сигналов посредством дефектоскопа с обеспечением их визуализации в виде амплитудно-временной развертки, выделение на ней соответствующей заданной зоне сканирования временной зоны, апертуру которой выбирают из условия невхождения в нее зондирующего импульса, задание критерия полезности сигнала и анализ зарегистрированных в этой временной зоне принятых сигналов, включающий определение их амплитуд через заданный промежуток времени, перемещают ультразвуковой преобразователь в зоне сканирования и повторяют операции контроля.

Изобретение относится к горной промышленности и может быть использовано для прогноза динамических явлений типа внезапного выброса угля и газа, горного удара и им подобных.

Изобретение относится к области неразрушающего контроля при реализации магнитных и ультразвуковых бесконтактных методов дефектоскопии для обнаружения дефектов и определения геометрических размеров изделий на значительных скоростях сканирования.

Изобретение относится к исследованиям прочностных свойств материалов и может применяться при аттестации сотовых структур при изготовлении трехслойных конструкций кораблестроения, авиастроения и космической техники.
Наверх