Фотоэлектрический преобразователь с просветляющим нанопокрытием

Изобретение относится к технологии изготовления оптоэлектронных приборов, а именно к конструкции фотоэлектрических преобразователей. Технический результат изобретения заключается в снижении поверхностного удельного сопротивления и уменьшении площади металлической контактной сетки (увеличение незатененной площади ФЭП не менее чем на 3%), что приводит к повышению КПД преобразования солнечной энергии в электрическую не менее чем на один абсолютный процент. Указанный технический результат достигается тем, что фотоэлектрический преобразователь с просветляющим нанопокрытием включает в себя полупроводниковую структуру AlGaInP/GaInP/Ga(In)As/Ge с фронтальным слоем AlGaInP, лицевой омический контакт, тыльный омический контакт и просветляющее покрытие. Между фронтальным слоем и просветляющим покрытием нанесен туннельный барьер, представляющий собой слой Ta2O5 толщиной 1÷2 нм. Просветляющее покрытие выполнено двухслойным и содержит последовательно нанесенный токопроводящий слой оксида цинка, допированного алюминием ZnO:Al толщиной 50÷60 нм, на который непосредственно нанесен лицевой омический контакт, и слой оксида кремния SiO2 толщиной 70÷90 нм. 1 ил.

 

Изобретение относится к технологии изготовления оптоэлектронных приборов, а именно к конструкции фотоэлектрических преобразователей.

Наиболее эффективными с энергетической точки зрения устройствами для превращения солнечной энергии в электрическую (т.к. это прямое, одноступенчатое преобразование энергии) являются полупроводниковые фотоэлектрические преобразователи (ФЭП).

Основные необратимые потери энергии в ФЭП связаны с:

- отражением солнечного излучения от поверхности преобразователя;

- прохождением части излучения через ФЭП без поглощения в нем;

- рассеянием на тепловых колебаниях решетки избыточной энергии образовавшихся фотопар;

- рекомбинацией образовавшихся фотопар на поверхностях и в объеме ФЭП;

- внутренним сопротивлением преобразователя и некоторыми другими физическими процессами.

Для уменьшения всех видов потерь энергии в ФЭП разрабатываются и успешно применяются различные мероприятия. К их числу относятся:

- использование полупроводников с оптимальной для солнечного излучения шириной запрещенной зоны;

- направленное улучшение свойств полупроводниковой структуры путем ее оптимального легирования и создания встроенных электрических полей;

- оптимизация конструктивных параметров ФЭП (глубины залегания p-n-перехода, толщины базового слоя, частоты контактной сетки и др.);

- применение многофункциональных оптических покрытий, обеспечивающих просветление, терморегулирование и защиту ФЭП от космической радиации;

- разработка ФЭП, прозрачных в длинноволновой области солнечного спектра за краем основной полосы поглощения;

- переход от гомогенных к гетерогенным и варизонным полупроводниковым структурам. Создание каскадных ФЭП из специально подобранных по ширине запрещенной зоны полупроводников, позволяющих преобразовывать в каждом каскаде излучение, прошедшее через предыдущий каскад, и пр.

Главной задачей усовершенствований ФЭП является увеличение КПД преобразования солнечной энергии в электрическую.

Известен патент, принятый нами за прототип, RU №2436191 (опубликованный 10.12.2011 г.) «Каскадный фотоэлектрический преобразователь с наноструктурным просветляющим покрытием», в котором предложен ФЭП на основе многослойной полупроводниковой структуры AlGaInP/GaInP/Ga(In)As/Ge, где фронтальный слой AlxGayIn1-x-yP, где х=0,53, y=0,47, толщиной 30÷40 нм. Просветляющее покрытие выполнено трехслойным и включает последовательно нанесенные слои Si02 толщиной 70÷80 нм, Si3N4 толщиной 25÷35 нм и TiOx, где х=1,8÷2,2, толщиной 20÷30 нм. Технический эффект в прототипе обеспечивается применением оптических покрытий, обеспечивающих просветление в ФЭП.

Недостатком указанного технического решения является то, что сохраняются значительные потери на контактной металлической сетке и не достигается максимально возможный КПД преобразования солнечного излучения.

Задачей заявляемого изобретения является разработка конструкции фотоэлектрического преобразователя с токопроводящим просветляющим нанопокрытием, обладающего повышенным КПД и низким коэффициентом отражения в коротковолновой и длинноволновой области солнечного спектра.

Технический результат изобретения заключается в снижении поверхностного удельного сопротивления и уменьшения площади металлической контактной сетки лицевого контакта (увеличение незатененной площади ФЭП не менее чем на 3%), что приводит к повышению КПД преобразования солнечной энергии в электрическую не менее чем на один абсолютный процент.

Указанный технический результат достигается тем, что в фотоэлектрическом преобразователе, включающем в себя полупроводниковую структуру AlGaInP/GaInP/Ga(In)As/Ge с фронтальным слоем AlGaInP, лицевой омический контакт, тыльный омический контакт и просветляющее покрытие. Между фронтальным слоем и просветляющим покрытием нанесен туннельный барьер, представляющий собой слой Ta2O5 толщиной 1÷2 нм. Просветляющее покрытие выполнено двухслойным и содержит последовательно нанесенный токопроводящий слой оксида цинка, допированного алюминием ZnO:Al, толщиной 50÷60 нм, на который непосредственно нанесен лицевой омический контакт, и слой оксида кремния SiO2 толщиной 70÷90 нм.

Само просветляющее покрытие выполняет двойную функцию: оно снижает отражение в широком спектре падающего солнечного излучения и снижает внутреннее сопротивление и площадь лицевой металлической контактной сетки.

Технический результат изобретения достигается за счет использования проводящего слоя ZnO:Al в составе просветляющего токопроводящего нанопокрытия и, дополнительно, туннельного слоя Та2О5 толщиной 1÷2 нм, необходимого для выполнения функции диффузионного барьера между материалами проводящего слоя ZnO:Al и фронтального слоя AlxGayIn1-x-yP.

Формирование просветляющего покрытия на фронтальной поверхности фотоэлектрического преобразователя необходимо для уменьшения потерь на отражение солнечного излучения. Включение в состав просветляющего нанопокрытия фотоэлектрического преобразователя токопроводящего слоя ZnO:Al, выполняющего совместно с металлической контактной сеткой функцию токосъема лицевого контакта, позволяет снизить сопротивление лицевого поверхностного электрода и одновременно, за счет этого, снизить площадь металлической контактной сетки. Наличие у просветляющего покрытия функции токосъема позволяет уменьшить общее сопротивление лицевого электрода и снизить омические потери. Выбор материалов для создания просветляющего покрытия общего состава Ta2O5/ZnO:Al/SiO2 обусловлен тем, что помимо низкого коэффициента отражения такая структура включает в себя токопроводящий слой, что в итоге приводит к увеличению КПД из-за уменьшения удельного поверхностного сопротивления и уменьшения площади металлической контактной сетки. Толщины слоев ZnO:Al в 50÷60 нм и SiO2 в 70÷90 нм обусловлены минимальными значениями отражения просветляющей системы в видимой и ближней инфракрасной области спектра. Также слой SiO2 выполняет функцию защитного слоя для всей конструкции. Если толщины слоев ZnO:Al и SiO2 будут больше и или меньше указанных значений, то это приведет к возрастанию коэффициента отражения в видимой и длинноволновой области солнечного спектра. Расчет минимального коэффициента отражения двухслойной, четвертьволновой просветляющей системы (n2h2=n3h30/4) при контроле на длине волны λ0 производится по формуле , где n2, n3, n4 - показатели преломления для SiO2, ZnO и фронтального слоя соответственно, h2 и h3 толщины SiO2 и ZnO соответственно.

При расположении металлической контактной сетки лицевого электрода на слое ZnO:Al, а не на контактном промежуточном слое, можно избежать повреждений полупроводниковой структуры ФЭП, присущих обычному ее формированию. В прототипе в местах вжигания металлической контактной сетки в контактный промежуточный слой GaAs в локальных местах происходит слишком глубокое проникновение металла контактной сетки в полупроводниковую структуру с затрагиванием активной части p-n-перехода, что приводит к формированию центров рекомбинации на продиффундировавших вглубь атомах металла и к увеличению рекомбинации образовавшихся фотопар в результате возникающих дефектов, что приводит к снижению КПД, возможно также локальное короткое замыкание p-n-перехода. Размещение же металлической контактной сетки на поверхности слоя оксида цинка устраняет проникновение металла вглубь полупроводниковой структуры AlGaInP/GaInP/Ga(In)As/Ge ФЭП.

Заявляемый фотоэлектрический преобразователь с просветляющим нанопокрытием поясняется чертежом, где схематически показано сечение фотопреобразователя.

Фотоэлектрический преобразователь с нанотолщинным просветляющим покрытием содержит:

- полупроводниковую структуру AlGaInP/GaInP/Ga(In)As/Ge с фронтальным слоем AlGaInP - 1;

- просветляющее и одновременно токопроводящее покрытие 2 на поверхности фронтального слоя состоит из слоя оксида цинка 6, допированного алюминием ZnO:Al толщиной 50÷60 нм с показателем преломления n=2,2, и слоя 7 из оксида кремния SiO2 толщиной 70÷90 нм с показателем преломления n=1,45;

- тыльный омический контакт - 3;

- тонкий промежуточный туннельный барьерный слой 4 из Та2О5 толщиной до 2 нм;

- лицевой омический контакт 5 в виде металлических дорожек.

Пример конкретного выполнения

Изготовлен лицевой электрод фотоэлектрического преобразователя с просветляющим нанопокрытием, состоящим из слоя Ta2O5 толщиной 1 нм и слоя ZnO:Al толщиной 55 нм, нанесенных методом атомно-слоевого осаждения, металлических дорожек толщиной 0,3 мкм и шириной 20 мкм, и финального защитного слоя из SiO2 толщиной 85 нм, закрывающего слой ZnO:Al с металлическими дорожками.

Изготовленный таким образом на поверхности полупроводниковой структуры лицевой электрод обладает повышенной проводимостью и прозрачностью, что привело к повышению КПД фотоэлектрического преобразователя не менее чем на один абсолютный процент.

Заявляемый фотоэлектрический преобразователь с просветляющим токопроводящим нанопокрытием помимо низкого коэффициента отражения во всем спектре преобразования солнечного излучения дополнительно обладает низким поверхностным удельным сопротивлением и уменьшенной площадью металлической контактной сетки (увеличение незатененной площади ФЭП не менее чем на 3%), что приводит к получению максимального КПД (не менее чем на один абсолютный процент) преобразования солнечной энергии в электрическую.

Фотоэлектрический преобразователь с просветляющим нанопокрытием, включающий полупроводниковую структуру AlGaInP/GaInP/Ga(In)As/Ge с фронтальным слоем AlGaInP, лицевой омический контакт, тыльный омический контакт и просветляющее покрытие, отличающийся тем, что между фронтальным слоем и просветляющим покрытием нанесен туннельный барьер, представляющий собой слой Та2О5 толщиной 1÷2 нм, просветляющее покрытие выполнено двухслойным и содержит последовательно нанесенный токопроводящий слой оксида цинка, допированного алюминием ZnO:Al, толщиной 50÷60 нм, на который непосредственно нанесен металлический лицевой омический контакт, и слой оксида кремния SiO2 толщиной 70÷90 нм.



 

Похожие патенты:

Cистема, использующая энергию солнца для генерирования энергии, включает в себя фотоэлектрический модуль, преобразователь энергии и устройство управления. Преобразователь энергии сконфигурирован, чтобы управлять выходным напряжением фотоэлектрического модуля так, чтобы выходное напряжение соответствовало целевому выходному напряжению.

Изобретение относится к области технологии дискретных полупроводниковых приборов и может быть использовано при изготовлении бескорпусных диодов для солнечных батарей космических аппаратов.

Изобретение относится к инфракрасным сканирующим матричным фотоприемным устройствам (МФПУ) - устройствам большого формата, преобразующим входное оптическое изображение, формируемое объективом и сканером, в заданный спектральный диапазон, а затем в выходной электрический видеосигнал.

Изобретение может быть использовано для создания солнечных батарей космического применения. Солнечный фотопреобразователь на основе монокристаллического кремния с n+-р или р+-n переходом у фронтальной поверхности, изотипным р-р+ или n-n+ тыльным потенциальным барьером для неравновесных неосновных носителей тока, дифракционной решеткой на фронтальной поверхности с периодом, равным 1 мкм, содержит эмиттер, базу и токосъемные контакты, при этом тыльный потенциальный барьер для неравновесных неосновных носителей тока сформирован за областью генерации зарядов на расстоянии 15÷20 мкм от фронтальной поверхности фотопреобразователя.

Изобретение относится к области электротехники и может быть использовано при изготовлении сенсибилизированного красителем солнечного элемента с пористой изоляционной подложкой, выполненной из керамических и органических волокон.

Изобретение относится к электротехнике. Полый цилиндр 1 состоит из двух половинок.

Изобретение относится к полупроводниковым гетероструктурам для изготовления светоизлучающих диодов и фотоэлектрических преобразователей на основе твердых растворов GaPAsN на подложках кремния.

Изобретение относится к области солнечной фотоэнергетики, в частности к созданию устройств для прямого преобразования солнечной энергии в электрическую с использованием сенсибилизированных красителем металлооксидных солнечных элементов (МО СЭ).

Изобретение относится к системам автоматической очистки солнечных панелей. Устройство очистки солнечной панели, содержащее источник питания, соединенный с солнечной панелью, датчики контроля загрязнения и провода, расположенные на поверхности солнечной панели, отличающееся тем, что провода выполнены с возможностью колебания и переплетены друг с другом в виде решетки, установленной на поверхность солнечной панели, при этом в качестве источника питания используют источник переменного тока, а датчики контроля загрязнения выполнены в виде датчиков натяжения проводов, расположенных по всей внешней грани решетки из проводов.

Изобретение относится к области техники фотоэлектрических систем преобразования световой энергии в электрическую. Фотовольтаическая ячейка выполнена в виде цилиндра с размером образующей L, сечение которого в плоскости, перпендикулярной образующей, является правильной геометрической фигурой с размером в поперечнике D; на внутренней поверхности цилиндра-подложки и его торцах нанесены послойно первый электрод - химическим осаждением металла, создающего примесные акцепторные центры в полупроводниках, из солесодержащего раствора; активный слой толщиной Δ - полупроводник n-тип в виде сплошной пленки, аморфной или поликристаллической, или смеси нано- и микропорошков со средним размером зерен d, осажденных из суспензии с долевым объемным содержанием порошка m; второй электрод - смесь нано- и микропорошков электронного прозрачного для света полупроводника и непрозрачного металла в соотношении (1-δ)/δ, осажденная из суспензии; после нанесения слоистой структуры проводят ее термический отжиг в вакууме или инертной среде с подбором технологических режимов так, чтобы в активном слое образовался p-n-переход за счет диффузии акцепторной примеси из материала первого электрода в полупроводник электронной проводимости; к одному из торцов цилиндра-подложки механически и электрически присоединена диэлектрическая подложка с пленочным электродом - отражателем света.

Изобретение относится к экспериментальной медицине и может быть использовано для ускорения восстановления количества эритроцитов и гемоглобина у крыс после кровопотери, являющейся моделью постгеморрагической анемии.

Изобретение относится к области экспериментальной медицины, а именно к способу неинвазивной доставки наночастиц в головной мозг млекопитающих, включающему следующие этапы: приготовление порошка монокарбида вольфрама или монокарбида ванадия в виде наночастиц с размером от 15 до 60 нм, приготовление смеси указанного порошка в виде наночастиц с жидким носителем, эндотрахеальное введение полученной смеси в количестве от 20 до 32 мг на килограмм веса млекопитающего.

Изобретение относится к области санитарии и гигиены, в частности к способу получения антисептического препарата, в том числе дезинфицирующего средства для обеззараживания воды в плавательных бассейнах и иных искусственных водоемах, для санитарно-гигиенической обработки помещений, хозяйственного инвентаря, мебели, бытовой техники и промышленного оборудования, а также для обеззараживания промывных и сточных вод.

Предложенная группа изобретений относится к области медицины. Предложена фармацевтическая композиция, обладающая противоопухолевой активностью по отношению к опухолевым клеткам меланомы M14, рака простаты РС3 и колоректальной карциномы СаСо2, состоящая из паклитаксела и рекомбинантного человеческого гистона Н1.3 при массовом соотношении гистон Н1.3 : паклитаксел = 25 : 1.
Изобретение относится в области нанотехнологии и пищевой промышленности. Способ получения нанокапсул спирулины в гуаровой камеди камеди характеризуется тем, что в качестве оболочки нанокапсул используют гуаровую камедь, а в качестве ядра - порошок спирулины, при этом порошок спирулины добавляют в суспензию гуаровой камеди в бензоле, в присутствии 0,01 г Е472с в качестве поверхностно-активного вещества, затем перемешивают при 1000 об/мин, после приливают 1,2-дихлорэтан, после чего полученную суспензию отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро : оболочка составляет 1:1, или 1:3, или 1:2.
Изобретение относится в области нанотехнологии, медицины и пищевой промышленности. Способ получения нанокапсул сухого экстракта шишек хмеля характеризуется тем, что в качестве оболочки нанокапсул используют альгинат натрия, а в качестве ядра - сухой экстракт шишек хмеля, при этом сухой экстракт шишек хмеля добавляют в суспензию альгината натрия в петролейном эфире в присутствии 0,01 г сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты в качестве поверхностно-активного вещества при перемешивании 1000 об/мин, далее приливают хладон-113, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро : оболочка составляет 1:1, 1:2 или 1:3.
Изобретение относится к области нанотехнологии, медицины, фармакологии и ветеринарной медицины. Способ получения нанокапсул метронидазола в гуаровой камеди характеризуется тем, что в качестве оболочки нанокапсул используют гуаровую камедь, в качестве ядра - метронидазол, при этом в суспензию гуаровой камеди в бензоле и 0,01 г препарата Е472с, используемого в качестве поверхностно-активного вещества, добавляют порошок метронидазола, затем добавляют 6 мл бутилхлорида, полученную суспензию нанокапсул отфильтровывают и сушат, при этом массовое соотношение ядро : оболочка в нанокапсулах составляет 1:3, 1:1, или 1:2.

Изобретение относится к нанотехнологии и может быть использовано при изготовлении полимерных композитов. Углеродные нанотрубки окисляют смесью азотной и серной кислот с образованием карбоксильных функциональных групп, ковалентно связанных с их поверхностью.
Изобретение относится в области нанотехнологии, медицины и пищевой промышленности. Способ получения нанокапсул сухого экстракта полыни характеризуется тем, что в качестве оболочки нанокапсул используют альгинат натрия, в качестве ядра - сухой экстракт полыни, при этом сухой экстракт полыни добавляют в суспензию альгината натрия в гексане в присутствии 0,01 г сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты в качестве поверхностно-активного вещества при перемешивании 1000 об/мин, далее приливают 1,2-дихлорэтан, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро : оболочка составляет 1:1, 1:2 или 1:3.

Изобретение относится к нанотехнологии. Порошок дзета-положительных гидрированных наноалмазов получают нагреванием частиц наноалмазов в атмосфере, содержащей 1-10 % газообразного водорода, при давлении от 5 мбар до 20 бар и температуре 300-1000 °С в течение 1-15 ч.
Изобретение относится к области нанотехнологии, медицины и пищевой промышленности, в частности к способу получения нанокапсул сухого экстракта зверобоя. Представлен способ получения нанокапсул сухого экстракта зверобоя, в котором в качестве оболочки нанокапсул используют альгинат натрия, а в качестве ядра - сухой экстракт зверобоя, при этом сухой экстракт зверобоя добавляют в суспензию альгината натрия в толуоле в присутствии 0,01 г Е472с в качестве поверхностно-активного вещества при перемешивании 1000 об/мин, далее приливают 6 мл хладона-112, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро:оболочка составляет 1:1, 1:2 или 1:3. Вышеописанный способ позволяет упростить и ускорить процесс получения нанокапсул, увеличить выход по массе. 3 пр.
Наверх