Способ получения свободно позиционируемых пленок методом электроспиннинга

Изобретение относится к нанобиотехнологии и может быть использовано при конструировании нановолокнистых пленок, мембран, подложек, фильтров. Способ получения пленки из нановолокон заключается в том, что создают разность потенциалов между металлическим капилляром и расположенным напротив него металлическим электродом, между которыми размещена пластина с отверстием. В пространство между капилляром и пластиной подают раствор полимера через капилляр, а в пространство между электродом и пластиной подают пары растворителя. При этом в качестве электрода используют плоский электрод, а в качестве растворителя, подаваемого в пространство между электродом и пластиной, используют растворитель, в котором полимер плохо растворим. Изобретение позволяет получать пленки большого размера (порядка 100 см2) и толщиной до1 мм. 1пр.

 

Изобретение относится к области нанобиотехнологии и может быть использовано при конструировании нановолокнистых пленок, мембран, подложек, фильтров.

Электроспиннинг (электроформование) - способ получения полимерных волокон в результате действия электростатических сил на электрически заряженную струю полимерного раствора или расплава. Метод электроформования позволяет получать полимерные волокна диаметром порядка нескольких сотен нанометров (см. статью «Электроспиннинг» http://ru.wikipedia.org/wiki/Электроспиннинг).

Известен способ электроформования нановолокон и получения из них нетканых материалов путем приложения высокого напряжения между металлическим капилляром и осадительным электродом и подачи в капилляр раствора (расплава) полимера, который под действием электрического поля вытягивается в тонкую струю, которая при испарении растворителя (или отверждении расплава) превращается в тонкое волокно, которое дрейфует на осадительный электрод (коллектор) и под действием электрического поля уплотняется и формирует тонкий материал. Осадительный электрод может иметь различную форму: пластина, вращающийся барабан и т.п. (Н.Р. Прокопчук, Ж.С. Шашок, Д.В. Прищепенко, В.Д. Меламед, Электроформование нановолокон из раствора хитозана (обзор). «Полимерные материалы и технологии», т. 1 (2015), №2, 36-56).

Недостатком данного способа является изменение структуры волокон при формировании пленки на твердой подложке (электроде) за счет «подплавления» формируемых волокон конденсируемыми парами растворителя и возможное загрязнение волокон материалами (веществами) подложки-электрода, на котором формируется пленка, из-за реакции растворителя с поверхностью и вымывания (выщелачивания) ионов металла из электрода-подложки, что является критичным для изготовления медицинских изделий, к которым применяются особые требования по чистоте.

Наиболее близким к предложенному является способ изготовления свободно позиционируемых пленок из нановолокон методом электроспининга, в которомпленка формируется во встречных струях полимера и растворителя (US 2010/0275780 A1, 04.11.2010, фиг. 16, 41). Высокое напряжение создают между металлическими капиллярами, между которыми свободно подвешен экран с отверстием, в один из капилляров подают раствор полимера, а в другой - растворитель, встречаясь в отверстии экрана заряженные частица раствора полимера нейтрализуются противоположно заряженными частицами растворителя, растворитель испаряется, и нановолокна формируют нетканый материал, закрывающий отверстие и закрепленный на краях отверстия экрана.

Недостатком данного способа является распыление раствора полимера из капилляра, что ограничивает геометрию противоэлектрода (второго капилляра) при распылении и не позволяет получать пленки больших площадей (более 100 см2). Данным способом можно получить пленку размером не более 40×40 мм и толщиной 100-300 мкм. Другим недостатком данного метода является возможная ионизация растворителя, которая может приводить к химической модификации получаемой пленки.

Технической проблемой, решаемой изобретением, является создание способа формирования пленок из нановолокон, свободного от вышеперечисленных недостатков.

Техническая проблема решается способом получения пленки из нановолокон, заключающимся в том, что создают разность потенциалов между металлическим капилляром и расположенным напротив него металлическим электродом, между которыми размещена пластина с отверстием, подают раствор полимера через капилляр в пространство между капилляром и пластиной и пары растворителя в пространство между электродом и пластиной, при этом согласно изобретению, в качестве электрода используют плоский электрод, а в качестве растворителя, подаваемого в пространство между электродом и пластиной, используют растворитель, в котором полимер плохо растворим.

Технический результат, достигаемый изобретением, заключается в обеспечении возможности получения пленок большой площади и толщины при одновременном повышении производительности в 2 раза.

Использование плоского металлического электрода позволило формировать однородное электрическое поле и получать пленки площадью более 100 см2 и толщиной до 1 мм (1000 мкм), а также обеспечить длительность биорезорбируемости пленок от 2 мес. до 2 лет в зависимости от вида полимера.

«Плохой растворитель», используемый для конденсации полимерных волокон, подается в область распыления в виде паров из пластиковой трубки направленной в область распыления.

Предложенный способ основан на формировании нанопленки на конструкции из пластиковой пластины (полипропилен, или полиэтилен, или тефлон и т.п.), при одновременном обдуве парами «плохого растворителя». Из курса физики полимеров хорошо известно, что в условиях «плохого растворителя» молекулы полимера конденсируются в компактные глобулы. Как показали исследования, при обработке сформированных нановолокон в процессе электрораспыления парами «плохого растворителя» можно подобрать условия, когда формируется свободно позиционируемая (висящая) пленка, подобно паутине. Пленка формируется в отверстии пластины и закреплена на краях отверстия пластины. Размеры отверстия пластины должны быть не менее размеров плоского электрода. Данный способ позволяет получить однородные, плотные, свободно позиционируемые пленки из нановолокон из широкого спектра полимеров, таких как полилактид, полигликолид, поликапролактон, капрон, поливиниловый спирт, белки (включая белки шелка и коллаген), полиакриламид и смеси этих полимеров. Для каждого полимера или группы полимеров подбирается «плохой растворитель», в котором полимер не растворим или плохо растворим. Например, для белковых пленок, «плохими растворителями» являются спирты - этанол или изопропанол. Оказалось, что такая обработка в процессе формирования нанопленок приводит к компактизации (усадке)нановолокон и к возможности получения толстых пленок.

Пример

Для получения пленки предлагаемым методом брали раствор полилактида, концентрацией 7% в гексафторизопропаноле. При распылении использовали металлический капилляр с внутренним диаметром 0,5 мм и противоэлектрод в виде пластины 10×10 см из нержавеющей стали. Для получения свободнопозиционируемой пленки использовали пластиковую (тефлоновую) пластину с отверстием квадратной формы 10×10 см, помещенную между капилляром и плоским электродом, между которыми подавали высокое напряжение 30 кВ. Расстояния между электродами и пластиной были по 35 см. В качестве «плохого» растворителя использовали этанол, пары которого подавали пластиковой трубкой в область между тефлоновой пластиной и плоским электродом. В результате этого процесса формировалась пленка из нановолокон на тефлоновой пластине в квадратном отверстии. Размер полученной пленки 10×10 см, толщина 1 мм.

Способ получения пленки из нановолокон, заключающийся в том, что создают разность потенциалов между металлическим капилляром и расположенным напротив него металлическим электродом, между которыми размещена пластина с отверстием, подают раствор полимера через капилляр в пространство между капилляром и пластиной и пары растворителя в пространство между электродом и пластиной, отличающийся тем, что в качестве электрода используют плоский электрод, а в качестве растворителя, подаваемого в пространство между электродом и пластиной, используют растворитель, в котором полимер плохо растворим.



 

Похожие патенты:

Изобретение относится к гибридным войлокам, которые изготовлены из образованных электропрядением нановолокон, с высокой проницаемостью и высокой емкостью. Предложен полученный электропрядением гибридный нановолоконный войлок, включающий композитное нановолокно, представляющее собой смесь дериватизированной наноцеллюлозы и первго полимера на нецеллюлозной основе, и однокомпонентное нановолокно, представляющее собой второй полимер на нецеллюлозной основе, причем первый и второй полимеры на нецеллюлозной основе могут быть дифференцированно удалены из нановолоконного войлока.

Изобретение относится к коагуляционной ванне с устройством (4) подачи коагулирующей жидкости, причем устройство (4) подачи коагулирующей жидкости имеет одно или несколько входных отверстий (6), которые располагаются ниже уровня (3) коагулирующей жидкости; в частности, к системе коагуляционной ванны с устройством (4) подачи коагулирующей жидкости и зоной входа для формованных нитей, которые подвергаются упрочнению в осадительной ванне, причем зона входа предусмотрена в положении, в котором у наполненной коагулирующей жидкостью осадительной ванны имеется поверхность коагулирующей жидкости, отличающейся тем, что устройство (4) подачи коагулирующей жидкости имеет одно или несколько входных отверстий (6), которые располагаются ниже зоны входа и направлены на помещенные в осадительную ванну формованные нити, так что формованные нити в ходе процесса обтекаются свежей коагулирующей жидкостью, а также дополнительно имеет регулятор (11) заполнения жидкостью и, в случае необходимости, другую ванну с другим составом коагулирующей жидкости, и к способу формования нитей в осадительной ванне.

Предложено изделие, содержащее многонаправленную ткань из первых усиливающих жгутов волокна, проходящих в первом направлении, и вторых усиливающих жгутов волокна, проходящих во втором направлении.

Комбинированная фильера для производства нановолокнистых или микроволокнистых материалов по настоящему изобретению содержит тонкостенный электрод и первое непроводящее тело, примыкающее к первой стенке указанного тонкостенного электрода.

Изобретение относится к медицине и заключается в способе доставки медицинского активного агента млекопитающему. Способ включает стадию, на которой млекопитающему вводят медицинское изделие, содержащее один или более филаментов, включающих: 10-50% масс., в пересчете на сухой филамент, материала основы, выбранного из природных полимеров, синтетических полимеров, сахаров и их комбинаций; от 50% масс., в пересчете на сухой филамент, медицинского активного агента, и менее чем 20%, по массе филамента, влаги.

Изобретение относится к способу получения волокна из конъюгированного с полисахаридом белка молочной сыворотки электропрядением, включающему стадии приготовления водного раствора, включающего полисахарид и белок молочной сыворотки, где указанный полисахарид присутствует в концентрации от 0,1 г/мл до около 5,0 г/мл, приложения к раствору напряжения от 15 до 25 кВ, сбора волокна на сборной пластине.

Изобретение касается способа и устройства для нанесения жидкой полимерной матрицы на активную волокнообразующую зону струны волокнообразующего элемента волокнообразующего электрода при помощи наносящего средства, совершающего возвратное движение вдоль активной волокнообразующей зоны струны в устройстве для производства нановолокон электростатическим методом формования волокна из жидкой полимерной матрицы в электрическом поле высокой напряженности, созданном между по крайней мере одним волокнообразующим электродом и противоположно расположенным осадительным электродом.

Изобретение относится к упаковочным материалам и касается способа снабжения поверхности подложки с волоконной основой барьерным слоем. Барьерный слой формируют осаждением нановолокон на поверхности посредством использования электроформования или формования из расплава, при этом пленку формируют посредством постобработки подложки с осажденными нановолокнами после осаждения нановолокон на поверхности.

Изобретение относится к технологии получения волокон из полимеров на основе полиакрилонитрила-полиакрилонитрила (ПАН) и сополимеров акрилонитрила (АН), а именно к стадии выделения полимера из раствора, и может быть использовано в производстве материалов для текстильной промышленности и прекурсоров для получения высокопрочного углеродного волокна нового качества, используемого в различных областях техники.

Изобретение касается производства нановолокон электростатическим методом. Вращающийся волокнообразующий электрод, служащий для вынесения полимерного раствора из резервуара полимерного раствора или расплава в электрическое поле для формования волокна в устройствах для производства нановолокон электростатическим методом формования волокна из полимерных растворов или расплавов, имеет продолговатую форму, содержит пару торцевых деталей, которые расположены на несущем средстве и между которыми уложены волокнообразующие элементы, выполненные из струны или проволочного прутка.

Предложено новое вещество - композитный материал на основе нанокристаллической целлюлозы и наночастиц кремния, обладающее эффективной люминесценцией в видимой области спектра при ультрафиолетовом возбуждении и высокой деградационной стойкостью люминесцентного сигнала.
Изобретение относится к способу получения изотопно-меченых веществ и может быть использовано для введения радиоактивной метки в белки с целью изучения их поведения в различных системах, включая биологические.

Изобретение относится к способам формирования пористого оксидного материала и может быть использовано для разработки анодных материалов литий-ионных батарей и суперконденсаторов нового поколения, чувствительных элементов газовых сенсоров.

Изобретение относится к медицинской технике и технологии, а именно к коллоидной взвеси для адгезионной прослойки при пломбировании зубов, которая содержит метакрилаты, ацетон в качестве растворителя, а также равнораспределенные наночастицы металлов антибактериального действия, при этом в качестве растворителя использована смесь 50/50 ацетона и этанола, где этанол предварительно насыщен наночастицами серебра, оксида железа, алюминия или оксида алюминия размером 20-30 нм с массовой концентрацией 1-3⋅10-6 %.

Изобретение относится к области металловедения, а именно к химико-термической обработке металлических изделий, к созданию наноструктурированных материалов конструкционного назначения, к решению проблемы трения и износа, и может быть использовано для повышения долговечности деталей машин в любой отрасли промышленности.
Изобретение относится к медицине и предназначено для лечения кожных заболеваний, ожогов, поверхностных и глубоких ран. На кожу или рану в область поражения наносят водный мицеллярный раствор наноразмерных частиц золота с регулярностью до трех раз в сутки в течение до десяти дней, одновременно производится внутривеннее капельное вливание лекарственного раствора янтарной кислоты в виде метилглюкаминовых смесей или соединений из расчета 5-6 г янтарной кислоты на 1 литр инфузионной смеси.

Группа изобретений относится к области биохимии. Предложена наночастица для трансфекции клеток, а также способ модификации внутриклеточных полинуклеотидов.

Изобретение относится к полупроводниковым фотопреобразователям, которые преобразуют солнечное излучение в электроэнергию, и может быть использовано в полупроводниковой промышленности для создания систем генерации электрической энергии.

Изобретение относится к области биотехнологии, конкретно к самособирающейся в наночастицу олигонуклеотидной конструкции, и может быть использовано в медицине. Олигонуклеотидная конструкция согласно настоящему изобретению может быть полезной в качестве системы доставки на основе олигонуклеотида нового типа, а также инструмента для лечения злокачественных заболеваний, инфекционных заболеваний и т.п.

Предложенная группа изобретений относится к области медицины. Предложена фармацевтическая композиция, обладающая противоопухолевой активностью по отношению к опухолевым клеткам меланомы M14, рака простаты РС3 и колоректальной карциномы СаСо2, состоящая из паклитаксела и рекомбинантного человеческого гистона Н1.3 при массовом соотношении гистон Н1.3 : паклитаксел = 25 : 1.

Предложено новое вещество - композитный материал на основе нанокристаллической целлюлозы и наночастиц кремния, обладающее эффективной люминесценцией в видимой области спектра при ультрафиолетовом возбуждении и высокой деградационной стойкостью люминесцентного сигнала.
Наверх